• Title/Summary/Keyword: Ball control

Search Result 580, Processing Time 0.029 seconds

Development for Scanning Type Stage Driven by Linear Motors (리니어모터를 이용한 고속 저중심 스테이지의 개발과 정밀도 향상)

  • 송창규;김정식;김경호;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.445-448
    • /
    • 2004
  • Linear motor is very rapidly substituted for rotary motor and ball screw for precision positioning applications because of its characteristics such as high speed, no backlash and simplicities. A precision positioning system which is composed of linear motion(LM) guide and linear motor is widely used since it has easy controllable property but this system has low accuracy problem caused by friction of the LM guide. In this study, a scanning type XY stage is manufactured and some experiments is performed to improve the accuracy of the stage.

  • PDF

NURBS Curve Interpolator for Controlling the Surface Roughness (표면거칠기를 고려한 NURBS 곡선보간기)

  • Choi In hugh;Jung Tae sung;Yang Min Yang;Lee Dong yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.698-706
    • /
    • 2005
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed fur generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

Toolpath Generation for Three-axis Round-end Milling of Triangular Mesh Surfaces (삼각망 곡면의 3축 라운드엔드밀 가공을 위한 공구경로 생성)

  • Chung, Yun-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • Presented in this paper is a method to generate round-endmill toolpaths for sculptured surfaces represented as a triangular mesh model. The proposed method is applicable in toolpath generation for ball-endmills and flat-endmills because the round-endmill is a generalized tool in three-axis NC (numerical control) milling. The method uses a wireframe model as the offset model that represents a cutter location surface. Since wireframe models are relatively simple and fast to calculate, the proposed method can process large models and keep high precision. Intersection points with the wireframe offset model and a tool guide plane are calculated, and intersection curves are constructed by tracing the intersection points. The final step of the method is extracting regular curves from the intersection curves including degenerate and self-intersected segments. The proposed method is implemented and tested, and a practical example is presented.

Remaining volume after smoothing(RVAS) variation according to runout (런아웃의 양에 따른 잔류 부피의 변화)

  • Kim M.T.;Lee H.S.;Je S.U.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1248-1252
    • /
    • 2005
  • Mold-manufacturing process consists of machining and finishing process that are strongly related in each other. But there are few studies about mold-manufacturing process to control those two processes simultaneously. Especially, runout distorts the machined surface from expected so it changes the finishing process and mold-manufacturing time. In this work, basic analyses and experiments were carried out to study RVAS variation according to runout in HSM. To perform those analyses, firstly surface generation analysis was done including runout in ball end milling and then the RVAS that could relate machining and finishing process was proposed. And the optimal finishing process in HSM according to RVAS was also proposed. Through experiment runout occurrence and above analyses were verified.

  • PDF

The Design of a Robust Linear Time-invariant Feedback Compensator Guaranteeing Uniform Ultimate Boundedness for Uncertain Multivariable Systems (Uniform ultimate boundedness를 보장하는 선형 시블변 되먹임 보상기 설계)

  • Choi, Han-Ho;Yoo, Dong-Sang;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.678-681
    • /
    • 1991
  • In this paper, we propose a robust linear time-invariant feedback compensator design methodology for multivariable system which have both matched and mismatched uncertainties. In order to attack the problem of designing robust compensators guaranteeing uniform ultimate boundedness of every closed-loop system response within an arbitrarily small ball centered at the zero state based solely on the knowledge of the upper norm-bounds of uncertainties, we use an approach based upon the comparison theorem which is an effective approach in studying augmented feedback control systems with both mismatched and matched uncertainties. Through the approach, we draw some sufficient conditions for robust stability, and we give a simple example.

  • PDF

Design of Optimized Fuzzy PI Controller Based on PSO for Ball & Beam System Control (입자군집최적화 기반 볼빔시스템 제어를 위한 최적 Fuzzy PI 제어기 설계)

  • Jung, Dae-Hyung;Jo, Se-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1948-1949
    • /
    • 2011
  • 본 논문은 볼빔시스템 제어에 대해 입자군집최적화(Particle Swarm Optimization; PSO)을 이용한 최적 퍼지제어기 설계방법을 연구한다. 볼빔 시스템은 모터와 빔, 움직이는 볼로 구성되며 볼의 위치제어를 기본 동작으로 한다. 본 논문에서는 제어성능이 우수한 퍼지제어기를 사용하여 제어시스템을 설계하는데, 퍼지제어구조는 1차 제어기와 2차 제어기로 구성되고, 최적 퍼지제어기 설계를 위해 PSO를 사용하며 PSO는 초기값에 영향이 적고 일반적인 탐색알고리즘과 달리 초기 수렴의 문제를 극복한다. 본 논문에서는 퍼지제어기와 기존의 PD 제어기의 성능비교를 시도 하였다.

  • PDF

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

A Study on the Signal Transmissibility of High Frequency Crash Pulse according to the Car Structure Difference (차체 구조 차이에 따른 충돌 고주파 신호 전달성 연구)

  • Park, Dongkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.8-15
    • /
    • 2013
  • Wide range frequency pulses occur in a car crash test. Until now, low frequency under 400Hz has been used to determine an airbag deployment criteria. Also, FIS (Front Impact Sensor) has been used to detect the crash pulse in early stage. Nowadays, technology to determine an airbag delpoyment criteria by using a high frequency crash pulse without FIS is being focused on. In this paper, the signal transmissibility of high frequency pulse for two different cars was studied. Also, signal transfer test of high frequency pulse was done by using a high speed ball impact. Signal runtime of the frontal impact is compared with that of the side impact. The signal transmissibility difference due to the car structure difference was discussed and structure change for improving the signal transmissibility was proposed.

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

Development of Roller Wheel Mobile Robot (롤러형 바퀴를 갖는 이동로봇 개발)

  • Kim, Soon-Cheol;Yi, Soo-Yeong;Choi, Jae-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.250-257
    • /
    • 2014
  • In this paper, a new mobile robot, so called a rollerbot, is presented, which has single body and rugby-ball shaped roller wheel. A rollerbot has single point contact on ground and low energy consumption in motion because of the reduced friction. By changing center of mass using a balancing weight, a rollerbot is able to get steering force. The vertical position of mass center of the rollerbot in this paper is designed to lie inside radius of the roller wheel, so that to have stable equilibrium position. Thus, the posture and the steering control of the rollerbot can be easily done by changing the center of mass. Kinematics of the rollerbot is derived by transformation of differential motion in this paper.