• Title/Summary/Keyword: Ball bearing retainer

Search Result 5, Processing Time 0.021 seconds

Design Characteristics for Water Lubricated Ball Bearing Retainer (수윤활 볼베어링의 리테이너 설계 특성)

  • Lee Jae-Seon;Choi Suhn;Kim Ji-Ho;Park Keun-Bae;Zee Sung-Quun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.278-282
    • /
    • 2005
  • Deep groove ball bearing is installed in a control element of an integral nuclear reactor, where water is used as coolant and lubricant. This bearing is made of STS440C stainless steel for the raceways and the balls to use in radioactive environment and water. It is known that the retainer design affects ball bearing operability and endurance life, however there is no verified retainer design and material for water lubricated ball bearing. Four kinds of retainers are manufactured for the endurance test of water lubricated deep groove ball bearing. Three of them are commercially developed types and the other is designed for this research. It is verified that ball bearings with steel pressed and general plastic retainer can not survive to required life in the water, however bearings with machined type and cylinder type retainer can survive. This proves that one of the major design parameters for water lubricated ball bearing is retainer type and material. In this paper, experimental research of endurance test for water-lubricated ball bearing are reported.

Failure Analysis of Ball Bearing Retainer Supporting Monorail Drive Roller (모노레일 주행 롤러 지지용 볼 베어링 리테이너의 파손 원인 분석)

  • Seongmin Kang;Yong Seok Choi;Unseong Kim;Kyungeun Jeong;Seung-Jun Yang;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.5
    • /
    • pp.157-162
    • /
    • 2024
  • This study evaluates the structural stability of the drive system of a monorail and investigates the causes of derailment accidents using finite element analysis. We assume a scenario where the gear pitch decreases by 1 mm owing to construction defects and perform dynamic analysis as the pinion gear traverses the abnormal pitch interval of the rack gear. The contact analysis between the rack and pinion gears reveals that the pinion gear collides in the abnormal pitch range due to the construction defect at the rack gear connection. The collision generates stresses exceeding the yield strength of the gear and rail materials, leading to plastic deformation. This study additionally investigates the bearings where the actual damage occurs utilizing the load data derived from the analysis. Findings indicate that plastic deformation and fatigue damage occurs in the bearing retainer and balls owing to the impact load, leading to ball detachment and retainer failure. Moreover, repetitive impact loads can rapidly degrade bearing durability, directly contributing to accidents. The findings of this study should be considered during the design, manufacturing, assembly, and maintenance processes of monorail system components, enhancing the safety through precise manufacturing and assembly practices.

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings (볼 베어링의 구름 요소 주위 유동 특성에 대한 해석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.