• 제목/요약/키워드: Ball artifact

검색결과 10건 처리시간 0.018초

Ball-Bar Artifact를 이용한 CMM의 공간 오차 측정 및 분석 (Volumetric Error Measurement and Calibration of Coordinate Measuring Machines Using a Ball-bar Artifact)

  • 구상서;이응석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.143-148
    • /
    • 2001
  • Volumetric error measurement and calibration of a coordinate measuring machine are studied by using a Ball-Bar artifact. Examples of the Ball-Bar design are shown using inbar materials and precision steel balls. Also, for the uncertainty error using the Ball-Bar is discussed. Method of Ball-Bar artifact and the analysis of the error vectors are proposed. Using the Ball-Bar data, we studied the method of volumetric errors ana]ysis of a coordinate measuring machine.

  • PDF

Machine Tools 공간오차 분석을 위한 Bal1-bar Artifact 연구 (A Study on the Ball-Bar Artifact for the Volumetric Error Calibration of Machine Tools)

  • 이응석;구상서;박달근
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.986-991
    • /
    • 2004
  • For volumetric error measurement and calibration for machine tools, manufacturing machine or coordinate measuring machine (CMM), are studied using a Ball-bar artifact. A design of the Ball-bar is suggested manufactured by Invar, which is a low thermal expansion material, and precision steel balls. The uncertainty for the artifact method is discussed. A method of the Ball-bar artifact for obtaining 3-D position errors in CMM is proposed. The method of error vector measurement is shown using the Ball-bar artifact. Finally, the volumetric error is calculated from the error vectors and it can be used for Pitch error compensation in conventional NC machine and 3-D position Error map for calibration of NC machine tools.

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정 (Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System)

  • 이재종;양민양
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

CNC 공작기계의 열변형 오차 보정 (I) - 보정장치 기초실험 - (Compensation of Thermal Error for the CNC Machine Tools (I) - The Basic Experiment of Compensation Device -)

  • 이재종;최대봉;곽성조;박현구
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.453-457
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. In this study, the compensation device is manufactured in order to compensate thermal error of machine tools under the real-time. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

작업조건에 따른 공작기계의 열변형 특성 해석 (Characteristics Analysis of Thermal Deformation for Machine Tools with respect to Operating Conditions)

  • 이재종;최대봉;박현구;곽성조;박홍석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.449-453
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정 (Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System)

  • 이재종;양민양
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

CT Angiography 영상에서 조영제 희석비율에 따른 Blooming Artifact 발생의 상관성 연구 (The Correlation Study of the Occurrence of Blooming Artifact according to Dilution Ratio of Contrast Media in CT Angiography)

  • 이수성;백세준;석정연;류대연;김성진;허영철
    • 한국방사선학회논문지
    • /
    • 제14권1호
    • /
    • pp.61-68
    • /
    • 2020
  • 본 연구에서는 CT 혈관조영 영상에서 조영제 희석비율에 따른 Blooming 인공물 발생의 상관성에 대하여 알아보고자 한다. 3D 프린터를 이용하여 PLA(Poly Lactic Acid)재질의 구형 팬텀을 자체 제작하였고 구형 팬텀 내부에 조영제와 식염수의 비율을 100:0부터 10:90으로 희석하여 총 10세트를 준비하였다. 이후 CT 횡단면 영상을 얻고 raw 데이터를 최대강도투사법, 다중평면 재구성 기법으로 재구성하여 각각 횡단면, 시상면, 관상면의 영상을 얻었다. 검사 후 얻은 영상의 구형 팬텀의 직경을 각각 30회씩 총 1800회 측정하였다. 측정결과, 다중 평면 재구성 기법 중 관상면에서 20:80으로 희석하였을 때 20.47±0.05 mm로 가장 작게 측정되었다(p<0.05). 마찬가지로 최대강도투사법 중 시상면에서 20:80으로 희석하였을 때 20.39±0.08 mm로 가장 작게 측정되었다(p<0.05). 희석비율과 측정 크기의 상관성 분석에서는 모든 재구성 영상에서 강한 음의 상관성을 확인하였다(p<0.05). 결론적으로 조영제 희석비율이 높을수록 혈관의 실측을 측정하기 어려우며 이에 대한 원인으로 Blooming 인공물이 있음을 확인하였다. 따라서 실측에 관한 추후 연구에서 본 연구가 기초자료를 제공할 수 있을 것이라 사료된다.

열적 환경변화에 의한 공작기계의 구조적 특성 (Thermal Deformation Characteristics of the Adaptive Machine Tools under Change of Thermal Environment)

  • 이재종;이찬홍;최대봉;박현구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.1023-1027
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 - (Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller -)

  • 이재종;최대봉;박현구
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF