• Title/Summary/Keyword: Ball Roll Distance

Search Result 7, Processing Time 0.019 seconds

Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel (메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어)

  • Park, Young Sik;Kim, Su Jeong;Byun, Soo Kyung;Lee, Jang Myung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.

Management to Prepare Fast Green Suitable for International Golf Tournament in Korea - A Case Study of the Lakeside Country Club - (한국에서 국제 골프 토너먼트 규격에 맞는 빠른 그린 관리 방법 - 레이크사이드 컨트리 클럽을 사례로 -)

  • 장유비;김진관;박장혁;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • The purpose of this study is to propose a standard putting green management program to prepare fast green suitable for international golf tournaments, and to conform whether the reported green speed model can be applied to the real field situations. The west course of Lakeside Country Club was selected for the case study. This study was initiated on August 1st, 2001 and continued through October 4th, 2001. The results are summarized as follows: 1. Following the long-term schedule, 'penncross' creeping bentgrass turf was mowed at 5.0mm(37days), 4.5mm(8days), 4.0mm(4days), 3.5mm(2days), 3.2mm(2days), 3.0mm(2days), 2.8mm(2days) and the mowing direction was changed daily. Variation of mowing height was reduced to a minimum range. Core aerification with deep tines was applied 19 days prior to the first practice round. Dry sand maintenance was top-dressed 2 times at 1.5mm/$m^2$ on the 17th day and 1.0mm/$m^2$ on the 10th day. Minimum irrigation was applied to keep the turf alive. During the tournament preparation week, dew on the putting greens was removed by using a sponge roller. Following the dew removal, the greens were cut once each morning at a height of 2.8mm. The mower used was the 21 inch working behind mower equipped with a tournament bedknife and 11 reel blades. Following the mowing, the peens were rolled with a light-weight roller in one direction in the morning. Rolling was used as a finishing technique to ensure that the surface was as smooth as possible, and to provide true ball roll and maximum green speed. In conclusion these management practices satisfied the daily green stimpmeter readings required for USGA championship play. 2. During the period of tournament preparation, no damage was observed on the green, but scalping in green edge appeared in about 0.39% of the total area of 18 greens in the west course.

The Effects of Mowing Height, Rolling, N-fertilizing, and Season on Green Speed in Korean Golf Courses (한국의 골프 코스에서 그린 스피드에 대한 예지고, 롤링, 질소 시비량과 계절의 효과)

  • 이상재;심경구;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.4
    • /
    • pp.91-99
    • /
    • 2001
  • This study was carried out to investigate the effects of mowing height, rolling, N-fertilizing, and season on green speed(i.e., ball-roll distance) for developing and implementing a program of increasing green speed in Korean golf courses. Data were subjected to multi-regression analysis using SPSSWIN(Statistical Package for the Social Science), which collected from Yong-Pyong golf course greens selected to investigate. The results was as follows. 1) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on spring green speed was as follows; $Y_1$(spring green speed)=4.287+0.155X$_1$(rolling times)-0.131X$_2$(the amount of N-fertilizing)-0.251X$_3$(mowing height). 2) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on summer green speed was as follows; $Y_2$(summer green speed)=4.833-0.423X$_3$(mowing height)+0.146X$_1$(rolling times)-0.107X$_2$(the amount of N-fertilizing). 3) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on fall green speed was as follows; $Y_3$(fall green speed)=4.651-0.383X$_3$(mowing height)+0.142X$_1$(rolling times)-0.103X$_2$(the amount of N-fertilizing). 4) As mowing height was lowered by 1mm, green speed increased by 0.251~0.423m. As rolling times increased by 1(one), green speed increased by0.142~0.15m. As the amount of N-fertilizing increased by 1g/$m^2$, green speed decreased by 0.103~0.131m. The season also affected green speed. In comparison with spring green speed, summer green speed decreased by 0.145m and fall green speed decreased by 0.144m.

  • PDF

A Comparative Study on the Putting Green Management for Tournament of Korean and Foreign Golf Courses during Tournament Play Week (공식 골프대회 기간중 한국과 외국의 골프코스들의 퍼팅그린 관리 방법 비교)

  • 장유비;이호순;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.91-106
    • /
    • 2003
  • The objective of this study is to present management methods for Korean golf courses to achieve fast green that satisfies international golf tournament standards during an official golf tournament. The results of both the research and the comparative study on putting green management of 24 tournaments hosted in Korea and 12 tournaments hosted in overseas countries in 2002 are as follows: 1. As for the putting greens in Korean and foreign golf courses where official golf tournaments were held, Korean of official golf tournaments were mainly opened in two-green system golf courses contrary to the foreign cases, and the average size of the greens in Korean golf courses was shown to be greater than that of foreign golf courses to some extent, although there was no difference between the types of turf varieties. 2. Results have shown that unlike foreign golf courses, Korean golf courses were managing putting greens by using greens mowers mostly for general (non-tournament) management, and elaborate rolling attempts failed during official tournament flay week because of an insufficient number of rollers to be input. Therefore, Korean golf courses are required to make efforts to secure 21-inch working-behind greens mowers equipped with tournament bedknifes and 11 blades, which is the greens mowing equipment for professional tournaments, and rollers above all things in order to achieve fast green during tournament play week 3. In attempting to achieve green as fast as that of foreign golf courses, Korean golf courses need to consider the method of performing mowing at 3.0mm height or less with greens mowers for professional tournaments. This needs to be done more than two times, followed by a continuous practice of rolling for proper management.

Management of Fast Putting Green by Using Green Speed Expectation Models (그린 스피드 예측 모형을 통한 빠른 그린 관리 방법)

  • Jang, You-Bee;Shim, Kyung-Ku
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.11-23
    • /
    • 2006
  • This study was carried out to propose low types of green speed expectation models for fast putting green management by changing mowing height($4.0{\sim}2.5$ mm) and timing of rolling, dew removal and dew removal+rolling. Ball roll distance data were taken from the creeping bentgrass(Agrostis palustris Huds. 'Penncross') practice green of east course at the Lakeside C.C. in October 18, 2001 and May 25, 2002. Data were subjected to multi-regression analysis using Statistical Package for the Social Science. Among four types of green speed expectation models, the best multiple-regression equation for fast green management was as follows; $Y_4=4.171-0.225{\cdot}X_1-0.038{\cdot}X_2$ (where, $Y_4$ : green speed(m) after single dew removal+single rolling, $X_1$ : mowing height($4.0{\sim}2.5,\;X_2$ : passage of time ($0{\sim}8$ h.)). The equation[single dew removal by using sponge roller $\rightarrow$ single mowing at 3.0 mm height or less $\rightarrow$ single rolling] explained to provide fast green over 3.2 m (Stimpmeter readings required for USGA championship play) until the end of first round. Therefore, this cultural practice system was believed to provide fast putting green condition for professional golf tournament

Characteristics and Correlation between Green Management Practices and Speed in Korean Golf Courses (한국의 골프 코스 그린의 관리 및 스피드 특성과 상관에 관한 연구)

  • 이상재;심경구;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.29-43
    • /
    • 2000
  • This study is carried out to investigate the cahracteristics of green management practices and green speed(i.e., ball-roll distance) on 129 Golf Courses in Korea, and to explain the effects of managemet practices that affect green speed. Data collected from green-keepers were subjected to frequency, correlation analysis, and multi-regression analysis using SPSSWIN(Statistical Package for the Social Science). The results are as follows. 1. In spring mowing height, 3.5-4 mm appeared the highest frequency(44.4%) and 4-4.5mm mowing height appeared the high frequency(41.0%). In summer mowing height, 4.5-5mm appeared the highest frequency(51.3%). In fall mowing height, 4-4.5mm appeared the highest frequency(41.0%). 2. In N-fertilizing amount of February and November, 0(zero) g/$m^2$ appeared the highest frequency. In N-fertilizing amount, of June and July 0-2 g/$m^2$ appeared the highest frequency. In N-fertilizing amount, of March, May, August, and September 2-4 g/$m^2$ appeared the highest frequency. In N-fertilizing amount, of October 2-4 or 6-8 g/$m^2$ appeared the highest frequency. 3. In spring topdressing times, 3-6 times appeared the highest frequency(52.6%). In spring topdressing amount, more than 2mm appeared the highest frequency(35.9%). In summer topdressing tierms, 0-3times appeared the highest frequency(71.8%). In summer topdressing amount, 0.5-1mm appeared the highest frequency(46.2%). In fall topdressing times, 0-3times appeared the highest frequency(47.4%). In fall topdressing amount, more than 2mm appeared the highest frequency(35.9%). 4. In spring irrigation tiems, 3-4times/a week appeared the highest frequency (30.6%). In spring irrigation amount, the irrigation below 5mm/day under appeared the highest frequency(38.7%). In summer irrigation times, 4-7times/ a week appeared the highest frequency(38.9%). In summer irrigation amount, 5-10mm/a day appeared the highest frequency(45.2%). In fall irrigation times, 2-3times/a week appeared the highest frequency(36.1%). In fall irrigation amount, the irrigation below 5mm/a day under appeared the highest frequency(45.2%). 5. In spring aeration times, 2 times appeared the highest frequency(55.2%). In spring aeration depth, 5-10mm appeared the highest frequency(81.6%). In fall aeration times, 1 time appeared the highest frequency(82.5%). In fall aeration depth, 5-10mm appeared the highest frequency(86.8%). 6. In spring green speed, 1.98-2.28 or 2.59-2.89mm appeared the highest frequency(32.7%). In summer green speed, 1.98-2.28mm appeared the highest frequency (46.9%). In fall green speed, 1.98-2.28mm appeared the highest frequency(38.8%). 7. The factors which affect green speed were mowing height, N-fertilizing, season, topdressing, irrigation, and aeration. Vertical mowing did not affect green speed. The order of the relevant important factors was mowing height >: N-fertilizing > season > topdressing > irrigation > aeration. Mowing height and N-fertilizing were the most important factors in green speed. As mowing height decreased, green sped always increased. As total N-fertilizing amount decreased, green speed increased. In summer, green sped decreased remarkably. As topdressing times increased and the topdressing amount decreased, green sped increased. As irrigation times increased and irrigation amount decreased, green speed increased.

  • PDF

Comparative Study on the Green Speed by different the Types of Putting green Maintenance Equipment (퍼팅그린 관리 장비 유형에 따른 그린스피드 차이 비교)

  • 장유비;심경구
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • The purpose of this study is to find the suitable putting green maintenance equipment for improving the quality of putting green. This study was carried out to investigate the green speed(i.e., ball roll distance) by different the types of greens mower(between work-behind greens mower and riding greens mower), the types of reel blades(between 9 blades and II blades) and the types of roller(between riding soil sprayer and lightweight roller). Green speed of golf course putting greens is assessed by use of Stimpmeter. The west course of Lakeside Country Club was selected for the case study. The results are summarized as follows; 1. The green speed was faster in 3.8 mm moving height treatment plot using work-behind greens mower than in 3.8 mm moving height treatment plot using riding greens mower right after the moving and even after eight hours had passed, and it was statistically significant at a 95% confidence level. Therefore, work-behind greens mower was judged to be a proper equipment type for the fast green management practice than riding greens mower. 2. The green speed was faster in 3.2 mm mowing height treatment plot using work-behind greens mower equipped with II blades than in 3.2 mm mowing height treatment plot using work-behind greens mower equipped with 9 blades, and this result was statistically significant at a 95% confidence level. Therefore, II-blade was judged to be a proper blade type for the fast green management practice than 9-blade. 3. The difference in green speed (green speed increased after rolling) between a treatment plot mowed at 3.0 mm mowing height with the work-behind greens mower and then rolled a single time with riding soil sprayer and a treatment plot mowed at 3.0 mm mowing height with the work-behind greens mower and then rolled once with lightweight roller was not statistically significant at a 95% confidence level. However, the difference in green speed (green speed decreased after rolling) between two treatment plots measured after eight hours had passed was statistically significant at a 95% confidence level. Therefore, the lightweight roller was judged to be a proper roller type for the fast green management practice than the riding soil sprayer.