• Title/Summary/Keyword: Ball Collector

Search Result 3, Processing Time 0.016 seconds

Development on Cleaning System of Condenser for Nuclear Power Plant by Using Sponge Ball (스펀지 볼을 이용한 원전용 복수기 튜브 세정 시스템 개발)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • This study presents a development of the cleaning system in a nuclear power plant condenser. The tube cleaning system is very important equipment in a power plant condenser. Specially, removal of the fouling is a key process in the condenser tube. The objective of this study is development of a ball collector system for cleaning a condenser by using a sponge ball. This study uses CFD in order to optimize design of the ball strainer screen. Through the CFD, the implication of the ball strainer screen for static pressure distribution is examined. Results of research, this study have developed a 1/5 scale model for application to the power plant and developed a performance test equipment.

The Measurements of Ball Recovery Rate for the Cleaning Apparatus in Plate Heat Exchanger Using Ceramic Ball (세라믹 볼을 이용한 판형열교환기 세정장치의 볼 회수율 측정)

  • Chae, Hee-Man;Kwon, Jeong-Tae;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • The objectives of this study are to measure the ball recovery rate of cleaning apparatus for plate heat exchanger. Ceramic ball is used for plate heat exchanger cleaning. The main components of cleaning apparatus are comprised of ball collector, ball trap, ejector, pump and plate heat exchanger. The ball recovery rate are obtained with change in recovery time and velocity of water. The results show that the ball recovery rate is slightly increased with increase in the recovery time and the velocity of water over 0.4 m/s in the straight flow. In the case of reverse flow, the ball recovery rate more increased than straight flow. The maximum ball recovery rate of the straight flow and reverse flow reach 83.97% and 86.61%, respectively, when the velocity and cleaning time are 0.5 m/s and 15min.

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.