• Title/Summary/Keyword: Balance Module

Search Result 128, Processing Time 0.025 seconds

Design and Evaluation of Digital Inclinometer for Measuring Postural Balance (자세 균형 측정을 위한 디지털 경사계 설계 및 평가)

  • Myoung, Hyoun-Seok;Lee, Hyo-Ki;Lee, Kyoung-Joung;Kwon, Oh-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.64-66
    • /
    • 2007
  • In this paper, a digital inclinometer to measure the angle and acceleration signals of subject laid on Roll was designed. The designed system consists of a tilt sensor, biaxial accelerometer, microcontroller and BlueTooth module. The designed digital inclinometer was easy to handle and easy to wear. To evaluate the performance of the system, we measured simultaneously the angle and acceleration signals from the 3 subjects on the Roll with two instruments which are ZEBRIS and our system. The measured signals were processed by statistical method and then the correlation coefficient of 0.93 was shown. From the results, the designed digital inclinometer is shown to be useful in assessment of body movement.

  • PDF

The study on construction of the practical testing ground of grid-connected photovoltaic system (태양광발전 계통연계 실증시험장 구축에 관한 연구)

  • Kim, Euihwan;Jang, Juyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • Currently the variety of governmental business support and research for supplying solar energy have been actively progressed. As of now, however, There are no practical testing infrastructures of grid-connected photovoltaic system which test performance of solar power facility in domestic. Therefore, in KEPRI, there is in progress construction of practical testing ground of 500 kW class grid-connected PV System for developing the evaluation of the performance technology including the Module, PCS, and etc, that is the important instrument of the PV System, in Gochang area. It analyzed the site creation work for constructing the practical testing ground and new construction of control room and the unit standards, specifications and capacity of required equipment. For the system detailed design, configuration, instrument-specific parameters established, power generation predictions of Array Type and the components of testing ground are needed to build.

  • PDF

A Master and Slave Control Algorithm for Parallel Operation of Modular 3-Phase UPS System (모듈형 3상 무정전 전원장치의 병렬 운전을 위한 주종 제어 알고리즘)

  • Lee, Taeyeong;Cho, Younghoon;Lim, Seung Beom;Ahn, Chang Heon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.479-480
    • /
    • 2016
  • This paper introduces a master and slave control algorithm for parallel operation of UPS system. If each module of UPS system control the output voltage and filter inductor current in parallel operation, it occur unbalanced output power each module. To operate UPS system parallel, it need a algorithm that control output power of modules. A master and slave control algorithm is helpful to balance output power of modules by controlling output current. The effect of a master and slave control algorithm is proved by simulations.

  • PDF

A Wide Color Gamut LCD Module using RGB BLU

  • Hong, Han-Young;Hwang, Hyun-Ha;Jeong, Seok-Hong;Kang, Seung-Gon;Kim, Sung-Ho;Son, Won-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1086-1089
    • /
    • 2006
  • We have developed 2.4" QVGA wide color gamut LCD module using RGB-LED backlight. The color gamut is achieved 100% of NTSC compared to 70% of NTSC when used with White-LED backlight. But RGB LED backlight is difficult to maintain its color balance since RGB LED is gradually degraded by the change of ambient temperature and a long term aging characteristic, etc. This paper describes a feasibility study of our optical feedback system developed for preventing such a color shift.

  • PDF

HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

  • Yang, Gang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.31-47
    • /
    • 2012
  • The so-called Ding-Chen ring is an n-FC ring which is both left and right coherent, and has both left and right self FP-injective dimensions at most n for some non-negative integer n. In this paper, we investigate the classes of the so-called Ding projective, Ding injective and Gorenstein at modules and show that some homological properties of modules over Gorenstein rings can be generalized to the modules over Ding-Chen rings. We first consider Gorenstein at and Ding injective dimensions of modules together with Ding injective precovers. We then discuss balance of functors Hom and tensor.

Design and Control of Interleaved Boost converter for Multi-string PV Inverter (멀티스트링 태양광 인버터용 인터리브드 부스트 컨버터의 설계 및 제어)

  • Kang, Young-Ju;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.538-543
    • /
    • 2011
  • In this paper, design and control of an interleaved boost converter for multi-string PV Inverter are discussed. Interleaved Boost converter can reduce current ripples at input and output side by cancelling an each phase of inductor currents. Therefore, it contributes to increase efficiency and downsize the whole system volume, cost. One of the advantages of the multi-string system is easy to expand power capacity by connecting the converter modules in parallel. In order to reduce current ripples, the inductor currents on each phase are controlled independently in the converter module, and communication between the converter modules is required for further ripple current reduction. Current control algorithm for the balance of the each phase ripple currents and synchronization of the converter modules based on communication are proposed and implemented in the DSP programming. 10kW prototype of the multi-string converter module is assembled and experimental results are presented to verify the proposed ripple current reduction methods.

Layout Optimization of FPSO Topside High Pressure Equipment Considering Fire Accidents with Wind Direction (풍향에 따른 화재영향을 고려한 FPSO 상부구조물 고압가스 모듈내부의 장비 최적배치 연구)

  • Bae, Jeong-Hoon;Jeong, Yeon-Uk;Shin, Sung-Chul;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.404-410
    • /
    • 2014
  • The purpose of this study was to find the optimal arrangement of FPSO equipment in a module while considering the economic value and fire risk. We estimated the economic value using the pipe connections and pump installation cost in an HP (high pressure) gas compression module. The equipment risks were also analyzed using fire scenarios based on historical data. To consider the wind effect during a fire accident, fuzzy modeling was applied to improve the accuracy of the analysis. The objective functions consisted of the economic value and fire risk, and the constraints were the equipment maintenance and weight balance of the module. We generated a Pareto-optimal front group using a multi-objective GA (genetic algorithm) and suggested an equipment arrangement method that included the opinions of the designer.

A Novel Current Sharing Technique for Interleaved Boost Converter (Interleaved 부스트 컨버터의 새로운 전류 분배 기법)

  • Min, Byung-Sun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.165-173
    • /
    • 2007
  • This paper introduces a new current sharing technique to Interleaved Boost Converter (IBC) using carrier slope control. The IBC is able to boost the input voltage and operates at higher current levels and has various advantages over a single power module. However, how to balance the current each module is still important problem. To solve this problem, the proposed technique can distribute the power and load current equally based on master-slave current sharing method. Unlike a conventional approach, this technique can be extended even though the current stress of switching components at slave modules is significantly smaller than that of the master module. The simulation and the experimental results are presented to show the validity.

A Selective Voltage Balancing Scheme of a Modular Multilevel DC-DC Converter for Solid-State Transformers (반도체 변압기용 모듈형 멀티레벨 DC-DC 컨버터의 선택적인 전압 균형 제어)

  • Lee, Eui-Jae;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.652-658
    • /
    • 2019
  • This paper proposes the selective voltage balancing scheme of a modular multilevel DC-DC converter for solid-state transformers. In general, the sub-module capacitor voltage can be controlled uniformly by individual feedback controllers, however computation time increases according to the number of modules. The voltage balance control scheme in this paper can reduce the computation time by selecting and controlling sub-module of maximum/minimum voltage momentarily. The performance of the proposed selective voltage balancing scheme is verified by simulation.

Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Jeon, Young-Tae;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.