• 제목/요약/키워드: Baffle Spacing

검색결과 7건 처리시간 0.022초

원통다관형 열교환기에서 배플인자가 열전달에 미치는 영향 (Effect of baffle parameters on heat transfer in shell-and-tube heat exchangers)

  • 이상천;조영우;남상철
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.185-194
    • /
    • 1997
  • An experimental study has been performed on the effect of baffle parameters on shell -side heat transfer in a conventional shell-and-tube heat exchanger. The baffle spacing distance and the number of baffle were varied to investigate the behavior of unequal baffle spacing correction factor which is appeared in the Bell Delaware method for prediction of the shell-side heat transfer coefficient. It was obvious that heat duties obtained from the experiment significantly deviated from those calculated by the conventional Bell-Delaware method. A new correlation of the unequal baffle spacing correction factor was developed. It was shown that the new correlation improves the accuracy of the Bell-Delaware method considerably. This result may induce the use of the Bell-Delaware method in developing a computer software for design of shell-and-tube heat exchangers.

배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구 (An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing)

  • 이육형;김순영;박명관
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.

원통다관형 열교환기의 가로막 개수에 관한 연구 (A study of number of baffle on shell and tube heat exchanger)

  • 김순영;이육형;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.635-638
    • /
    • 2000
  • The propose of study analyze a TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with 3, 5, 7, 9, 11 baffles and 16, 20 tubes. In this investigate measured a variation of the heat exchanger cooling capacity change within each number of baffle and tube number and determined optimal number of baffle. designs for industry applications are optimized using the analysis of test results.

  • PDF

빙축열 시스템의 제빙용 열교환기내에서 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in Ice Making Heat Exchanger Applied to Ice-Storage System)

  • 백영렬;이재헌
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.110-119
    • /
    • 1994
  • Three dimensional characteristics of fluid flow and heat transfer have been studied numerically around the latent heat storage vessel which was applied to the practical ice-storage system. The result obtained indicates that the value of frictional coefficient decreases with decrease of baffle width. For the baffle spacing. $S/H_D=9.375$, baffle height. $H/H_D=0.5$ and various pressure drop, average Nusselt numbers in heat transfer surface are much dependent on the width of side baffle and middle baffle. that is. Nu_m decreases with decrease of the width of middle baffle when the width of side baffle is 4.375, where as the optimum condition of side baffle for $Nu_m$ exists in the range of 3.5< $B_1/H_D$ <4.375 at the width of middle baffle, $B_2/H_D=6.875$.

  • PDF

단관 환형배플 시스템의 전열성능에 대한 수치해석 (A Numerical Study on the Heat Transfer Performance of Single-Tube Annular Baffle System)

  • 홍정아;전용두;이금배
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.621-626
    • /
    • 2012
  • A new baffle configuration, an annular baffles, are considered in the present study as an alternative to reduce the excessive pressure drop associated with the conventional segmental ones in typical operating conditions. The heat transfer and pressure drops are numerically simulated for a single tube shell-and-tube model and compared against the conventional-baffle cases. Baffle blockage ratio and number of baffles are considered as the major variables for the present study specifying a fixed baffle spacing. It is found that the heat transfer increases 1.4~2.2 times without significant pressure loss compared to the bare tube cases and the goodness factor increases 1.35 times compared to the conventional-baffle model.

배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과 (Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter)

  • 조진래;김민정;이상영;허진욱
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.147-154
    • /
    • 2002
  • 수직방향 가속도를 받는 원통형 액체 저장탱크는 내부유체의 슬로싱(sloshing)에 의한 동하중에 의하여 구조 및 제어성능 안정성에 심각한 영향을 받을 수 있다. 더욱이 유체의 슬로싱 진동수가 제어계 혹은 탱크구조물의 고유진동수 근처에 있게되면 발사체에 큰 동하중과 모멘트를 유발하게 된다. 이와 같은 유체의 동적 효과를 억제하기 위하여 일반적으로 링형 탄성체 배플(baffle)을 채용하고 있다. 본 논문에서는 배플의 개수와 내경을 변수로 설정하여 배플의 동적억제효과를 평가 및 분석하기 위한 수치해석을 수행한다. 배플내경에 따른 파라메트릭 해석과, 탱크높이 및 유체높이를 각각 균등 분할하여 설치된 배들에 대한 동억제 효과를 분석한다. 유체와 구조물 사이의 정확하고 효과적인 연계해석을 위하여 ALE(arbitrary Lagrangin-Eulerian) 수치해석 기법을 적용한다.

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • 제62권2호
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.