• Title/Summary/Keyword: Baekje Weir

Search Result 15, Processing Time 0.051 seconds

Analysis of Environmental Factors Associated with Cyanobacteria Dominance in Baekje Weir and Juksan Weir (백제보와 죽산보에서 남조류 우점 환경요인 분석)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyung-Seok;Cho, Young-Cheol;Lee, Hee-Suk;Park, Yeon-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • Followingthe Four Rivers Project, cyanobacterial blooms have been frequently observed in the upstream of the installed weirs. The aim of this study was to characterize the major environmental factors that are associated with the cyanobacteria dominance in Baekje Weir (Geum River) and Juksan Weir (Youngsan River) based on intensive experiments and systematic data mining methods. The factors related to the cyanobacteria dominance include7-days cumulative rainfall (APRCP7), 7-days averaged flow (Q7day), water temperature (Temp), stratification strength (${\Delta}T$), electronic conductivity (EC), DO, pH, $NO_3-N$, $NH_3-N$, TN, TP, $PO_4-P$, Chl-a, Fe, BOD, COD, TOC, and $SiO_2$. The most highly correlatedfactors to the dominant cyanobacteria were found to be EC, Temp, Q7day, $PO_4-P$ in theBaekje Weir. On the other hand, those dominant in the Juksan Weir were ${\Delta}T$, TOC, Temp, EC and TN. The EC showed a strong correlation with cyanobacteria dominance in both weirs because a high EC represents a persisted low flow condition. The cyanobacteria dominance was as high as 56 % when the EC was equal or greater than $418{\mu}S/cm$ in Baekje Weir. It was as high as 63% when the ${\Delta}T{\geq}2.1^{\circ}C$ in the Juksan Weir. However, nutrients showed a minor correlation with cyanobacteria dominance in both weirs. The results suggest that the cyanobacteria dominate in astate where the water flow rate is low, water temperature is high and thermal stratification is strengthened. Therefore, the improvement of flow regimes is the most important to prevent persistent thermal stratification and formation of cyanobacteria bloom in theBaekje and JuksanWeirs.

Flora Changes in Gongju and Baekje Weir in Geumgang River, Republic of Korea (금강수계 공주보와 백제보의 식물상 변화 분석)

  • Eui-Joo Kim;Jae-Young No
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.789-800
    • /
    • 2023
  • A vascular flora survey was conducted in 2020 to identify flora and analyze changes in the numbers of vascular flora species over the past 10 years at Gongju-weir (GW) and Baekje-weir (BW) in the Geumgang River, Republic of Korea. A total of 241 taxa were found in GW and 279 taxa in BW, and 208 taxa (88% of total taxa) were common species. The distribution of invasive species in GW and BW were seven and eight taxa, respectively. Rare plants were not identified in any of the weirs. The Poaceae family dominated in terms of number of species, followed by Asteraceae, Legumes, Cyperaceae, and Polygonaceae. Additionally, Therophytes accounted for a high proportion of Raunkiaer life forms. The numbers of vascular plant species, total taxa, naturalized plants, and invasive species have been increasing over the last 10 years. However, long-term alterations in invasive species before and after the opening of the weirs increased much more significantly in the partially opened BW than in the fully opened GW. These results indicate that the degree of barrier opening does not affect the invasion and establishment of non-native species.

Relationship of the Thermal Stratification and Critical Flow Velocity Near the Baekje Weir in Geum River (금강 백제보 구간 수온성층 형성과 임계유속 관계)

  • Kim, Dong-min;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • In Geum River of Korea, three multi-purpose weirs were built at the downstream of Daecheong Reservoir during the Four Major River Restoration Project (FMRRP). The weirs have altered the hydraulic characteristics of the river, and consequently transformed the large areas of flowing ecosystem to deep and wide stagnant environment. In every summer, a thermal stratification occurred near the Baekje Weir having mean depth of 4.0 m, and the surface algal blooms dominated by buoyant cyanobacteria have been frequently formed after the FMRRP. The objective of this study was to investigate the relationship between flow velocity and thermal stability of the waterbody using a three-dimensional (3D) hydrodynamic model (EFDC+) after calibration against the thermistor chain data obtained in 2014. A new Sigma-Zed vertical grid system of EFDC+ that minimize the pressure gradient errors was used to better simulate the thermodynamics of the waterbody. The model reasonably simulated the vertical profiles of the observed water temperatures. The vertical mean flow velocity and the Richardson Number (Ri) that represents the stability of waterbody were estimated for various management water levels and flow rates scenarios. The results indicated that the thermal stability of the waterbody is mostly high ($Ri{\gg}0.25$) enough to establish stratification, and largely depend on the flow velocity. The critical flow velocity that can avoid a persistent thermal stratification was found to be approximately 0.1 m/s.

Characteristics of chemical water quality and the empirical model analysis before and after the construction of Baekje Weir (금강수계 백제보 건설 전·후의 화학적 수질특성 및 경험적 모델 분석)

  • Kim, Yu-Jin;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.48-59
    • /
    • 2019
  • This study analyzed the water quality characteristics and developed empirical models prior to and after the construction of Baekje Weir, in the Geum River watershed between 2004-2017. The comparative evaluation of the surface water chemistry before and after the four major river projects on the weirs indicated that total phosphorus (TP), based on annual data, rapidly decrease after the construction of the weir while the total nitrogen(TN) decreased. Conversely, chlorophyll-a (CHL) concentration, which is a good indicator of primary productivity, increased after the construction of the weir together with an increase in specific conductivity. Simply put, the construction of the weir led to the decrease in concentrations of N and P due to the increased water residence time (WRT), whereas the CHL :TP ratio greatly increased in magnitude. The regression analysis of the empirical model indicated that CHL had no significant relation (r=0.068, p=0.6102, n=58) with TP before the weir construction, but had a relation with TP after the weir construction (r=0.286, p<0.05, n=56). Therefore, such conditions resulted in an increase in primary productivity on a given unit of phosphorus, resulting in frequent algal blooms. In contrast, seasonal suspended solids (SS) and TP increased during the monsoon period, compared to the pre-monsoon, thereby showing positive correlations (r>0.40, p<0.01, n=163) with precipitation. If the government consistently discharges water from the weir, the phosphorus concentration will be increased due to its reversion to a lotic waterbody from a lentic waterbody hereby reducing algal blooms in the future.

Preliminary Ecological Assessments of Water Chemistry, Trophic Compositions, and the Ecosystem Health on Massive Constructions of Three Weirs in Geum-River Watershed

  • Ko, Dae-Geun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • Major objectives of the study were to analyze chemical and biological influences of the river ecosystem on the artificial weir construction at three regions of Sejong-Weir (Sj-W), Gongju-Weir (Gj-W), and Baekje-Weir (Bj-W) during 2008-2012. After the weir construction, the discharge volume increased up to 2.9 times, and biological oxygen demand (BOD) and electrical conductivity (EC) significantly decreased (p < 0.05). Also, the decrease of total phosphorus (TP) was also evident after the weir construction, but still hyper-eutrophic conditions, based on criteria by , were maintained. Multi-metric model of Index of Biological Integrity (IBI) showed that IBI values averaged 21.0 (range: 20-22; fair condition) in the Bwc, and 14.3 (range: 12-18; poor condition) in the Awc. The model values of IBI in Sj-W and Gj-W were significantly decreased after the weir construction. The model of Self-Organizing Map (SOM) showed that two groups (cluster I and cluster II) of Bwc and Awc were divided in the analysis based on the clustering map trained by the SOM. Principal Component Analysis (PCA) was similar to the results of the SOM analysis. Taken together, this research suggests that the weir construction on the river modified the discharge volume and the physical habitat structures along with distinct changes of some chemical water quality. These physical and chemical factors influenced the ecosystem health, measured as a model value of IBI.

Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River (낙동강, 금강 및 영산강 가동보 운영이 수질 및 녹조현상에 미치는 영향 분석)

  • Seo, Dongil;Kim, Jaeyoung;Kim, Jinsoo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.877-887
    • /
    • 2020
  • A 3-Dimensional hydrodynamic and water quality model was applied to evaluate the effects of weir gate operations on water quality and harmful algal bloom (HAB) occurrences at selected locations in the Nakdong River, Geum River, and Yeongsan River. For the Geum River and Yeongsan River, when the gates are left open, annual and summer Chl-a and HABs were decreased at upstream locations, Sejong Weir and Seungchon Weir, but summer average concentrations of Chl-a and HABs were increased at downstream locations, Baekje Weir and Juksan Weir. For the open scenario, the reduced hydraulic residence time in the upper stream areas of the Geum River and Yeongsan River would allow less available time for nutrient consumption that would result in higher dissolved inorganic phosphorus concentrations followed by higher algal growth in the downstream areas. However, in the case of the Nakdong River, both annual and summer Chl-a and HABs were increased in all locations for the open scenario. This condition seems to be resulted in due to increased light availability by reduced water depths. Changes in Chl-a and HABs occurrences due to the water gate control in the study sites are different due to differences in physical, chemical, and biological conditions in each location.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Temporal changes in river channel habitat diversity by large weirs in the Geum River using satellite imagery analysis (위성영상 분석을 통한 금강수계 대형보에 따른 수변서식처 다양성 변화 연구)

  • Ock, Giyoung;Choi, Mikyoung;Kim, Jeong-Cheol;Park, Hyung-Geun
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.705-713
    • /
    • 2020
  • The present study investigated the temporal changes of river habitats caused by construction and operation of the three large weirs (Sejong, Gongju, and Baekje) in the Geum River. High resolution satellite imagery taken during three periods (preconstruction, before and after gate operation) were used for habitat analysis. We divided bar area into eight habitat types in addition to water area. Then, we identified the nine habitat types from the satellite imagery and estimated each habitat area. Our results show that after weir construction, large bar areas were dramatically decreased and bareland was nearly absent post gate-operation in all three weirs. However, total bar area and bareland were again increased distinctively soon after weir opening events, especially in the uppermost weir, the Sejongbo. These results suggest that weir opening operations provide a relatively simple channel of more diverse through the process of increasing bar area in a river channel.

Biological Accessibility to Algae Control through Measurement of Filtration Rate of Three Freshwater Bivalves (담수 이매패류 3종의 여과율 측정을 통한 조류 제어의 생물학적 접근 가능성)

  • Na, Young-Kwon;Kim, Dong-Kyun;Kim, Young-Shin;Park, Jung-Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In order to control algal bloom, which causes environmental problems such as eutrophication in freshwater ecological environments, many attempts have recently been made using biological approaches. Among them is filtration using bivalve. Algae control with filter-feeding bivalves is emerging as an eco-friendly method. In this study, bivalves collected at Baekje weir in Geum River in Korea from Jun to Sep 2020 were tested to find out the possibility of algae control using filter-feeding bivalves through laboratory experiments. The Unio douglasiae, Anodonta woodiana, and Anodonta arcaeformis collected from Baekje weir were put into a water tank (2 L) containing Clorella vulgaris, and as a result, the average filtration rate was 95.9% per animal after 24 hrs. Calculating this with the Chl-a concentration converted to a calibration curve, it was found that the average of 154.84 ㎍ L-1 of Chl-a was reduced. Based on this calculation, the possibility that one bivalve can eliminate Chl-a in one month is 0.0005%. It is expected that the effect is 20.14% when there are 40,000 animals. These results indirectly showed how effective bivalve's ability to control Chl-a in their habitat is. Although this study was limited to calculating the algae control ability of aquatic ecosystem based on the filtration rate of bivalve and the corresponding Chl-a reduction rate, it is thought that it will be used as basic data for integrated research from various factors and viewpoints (phytoplankton, aquatic plants, benthic organisms, and sediments) through additional research.

Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir (남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석)

  • Jang, Wonjin;Kim, Jinuk;Kim, Jinhwi;Nam, Guisook;Kang, Euetae;Park, Yongeun;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we estimated the concentration of chlorophyll-a (Chl-a) using hyperspectral water surface reflectance in an inland weir (Baekjae weir) and estuarine reservoir (Namyang Reservoir) for monitoring the occurrence of algae in freshwater in South Korea. The hyperspectral reflectance was measured by aircraft in Baekjae Weir (BJW) from 2016 to 2017, and a drone in Namyang Reservoir (NYR) from 2020 to 2021. The 30 reflectance bands (BJW: 400-530, 620-680, 710-730, 760-790 nm, NYR: 400-430, 655-680, 740-800 nm) that were highly related to Chl-a concentration were selected using permutation importance. Artificial neural network based Chl-a estimation model was developed using the selected reflectance in both water bodies. And the performance of the model was evaluated with the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE). The performance evaluation results of the Chl-a estimation model for each watershed was R2: 0.63, 0.82, RMSE: 9.67, 6.99, and MAE: 11.25, 8.48, respectively. The developed Chl-a model of this study may be used as foundation tool for the optimal management of freshwater algal blooms in the future.