• Title/Summary/Keyword: Badnavirus

Search Result 5, Processing Time 0.02 seconds

The Genera Babuvirus and Badnavirus in Asia

  • Natsuaki, Keiko T.;Furuya, Noriko
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2007
  • In the plant virus world, there are six genera of plant viruses with dsDNA genomes and six genera with ssDNA (Fauquet et al., 2005). The dsDNA viruses are comprised of 4 genera in the Caulimoviridae, the genus Badnavirus and the genus Tungrovirus. The ssDNA viruses are comprised of four genera in Geminiviridae, and the two genera Nanovirus and Babuvirus in the Nanoviridae. The genera Babuvirus and Badnavirus are not well studied in Asia. However, we recognized the significance of two species, Banana bunchy top virus (BBTV) in the genus Babuvirus and Banana streak virus (BSV) in the genus Badnavirus, during the survey of banana viruses in Asia. Their main characters will be introduced in this mini-review.

Presence of Diverse Sugarcane Bacilliform Viruses Infecting Sugarcane in China Revealed by Pairwise Sequence Comparisons and Phylogenetic Analysis

  • Ahmad, Kashif;Sun, Sheng-Ren;Chen, Jun-Lu;Huang, Mei-Ting;Fu, Hua-Ying;Gao, San-Ji
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • Sugarcane bacilliform viruses (SCBV), which belong to the genus Badnavirus, family Caulimoviridae, are an important DNA virus complex that infects sugarcane. To explore the genetic diversity of the sugarcane-infecting badnavirus complex in China, we tested 392 sugarcane leaf samples collected from Fujian, Yunnan, and Hainan provinces for the occurrence of SCBV by polymerase chain reaction (PCR) assays using published primers SCBV-F and SCBV-R that target the reverse transcriptase/ribonuclease H (RT/RNase H) regions of the viral genome. A total of 111 PCR-amplified fragments (726 bp) from 63 SCBV-positive samples were cloned and sequenced. A neighbor-joining phylogenetic tree was constructed based on the SCBV sequences from this study and 34 published sequences representing 18 different phylogroups or genotypes (SCBV-A to -R). All SCBV-tested isolates could be classified into 20 SCBV phylogenetic groups from SCBV-A to -T. Of nine SCBV phylogroups reported in this study, two novel phylogroups, SCBV-S and SCBV-T, that share 90.0-93.2% sequence identity and show 0.07-0.11 genetic distance with each other in the RT/RNase H region, are proposed. SCBV-S had 57.6-92.2% sequence identity and 0.09-0.66 genetic distance, while SCBV-T had 58.4-90.0% sequence identity and 0.11-0.63 genetic distance compared with the published SCBV phylogroups. Additionally, two other Badnavirus species, Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV), which originally clustered in phylogenetic groups SCBV-E and SCBV-F, respectively, are first reported in China. Our findings will help to understand the level of genetic heterogeneity present in the complex of Badnavirus species that infect sugarcane.

Viruses Associated with Fig Mosaic Disease in Different Fig Varieties in Montenegro

  • Latinovic, Jelena;Radisek, Sebastjan;Bajceta, Milija;Jakse, Jernej;Latinovic, Nedeljko
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.32-40
    • /
    • 2019
  • Symptoms of fig mosaic disease have been noticed on leaves of fig (Ficus carica) for several decades, in Montenegro. In 2014, leaf samples were collected from trees of six fig cultivars in a plantation located in the main fig-producing area of Montenegro, to study the disease. After RNA isolation, samples were tested by RT-PCR for detection of nine fig viruses and three viroids. Four viruses were detected: fig leaf mottle-associated virus 1 (FLMaV-1), fig mosaic virus (FMV), fig mild mottle-associated-virus (FMMaV) and fig badnavirus 1 (FBV-1). Most of the viruses were present in mixed infections. The amplicons of the viruses were directly sequenced from both directions. A BLAST search of these sequences revealed sequence identities with their closest counterparts at GenBank of 92, 97, 92 and 100%, for FLMaV-1, FMV, FMMaV and FBV-1, respectively. Different responses in symptom expression due to the various virus combinations detected have been demonstrated. Variety $Su{\check{s}}ilica$ had the least symptom expression, with only one virus (FBV-1) found. Considering that the production of figs in Montenegro is increasing and has a substantial relevance in this geographic location, the results indicate that more attention should be given to improving the phytosanitary condition of fig trees in the country.

Detection and Phylogenetic Analysis of Viruses Linked with Fig Mosaic Disease in Seventeen Fig Cultivars in Palestine

  • Jamous, Rana Majed;Zaitoun, Salam Yousef Abu;Mallah, Omar Bassam;Shtaya, Munqez;Elbeaino, Toufic;Ali-Shtayeh, Mohammed Saleem
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.267-279
    • /
    • 2020
  • Fig mosaic is a viral disease (FMD) that spreads in Palestinian common fig (Ficus carica L.) orchards. Recognizing the economic value of fig plants and the harmful nature of FMD, the disease poses a significant threat to the economy of the fig production in Palestine. We applied the reverse transcription and amplification (RT-PCR) and PCR technique to leaf samples of 77 trees and 14 seedlings of 17 fig cultivars. The samples were collected from orchards in the main fig-growing provinces of the Palestinian West Bank, to assess the prevalence of viruses associated with FMD, and confirm a possible link of symptoms with viruses detected. Four viruses were detected: Fig mosaic virus (FMV), Fig badnavirus-1 (FBV-1), Fig leaf mottle-associated virus 2 (FLMaV-2), and Fig fleck-associated virus (FFkaV). FMV and FBV-1 were found in all tested fig plants (100%), while FLMaV-2 and FFkaV were detected in 61.5% and 33% of the fig samples, respectively. The high incidence of FBV-1 in the newly propagated symptomatic and symptomless seedlings from different cultivars may be an indication that FBV-1 is integrated into the genome of the fig in a cultivar nondiscriminatory manner. Very weak or no association was detected between FMD symptoms severity in the 17 Palestinian fig cultivars with the various viruses' combinations observed (i.e., number of the viruses infecting the plant). These results support the notion that FMD symptom severity expression is likely to be controlled by a combination of FMV infection, cultivars, and environmental factors, rather than the number of viruses infecting the plant.

Metatranscriptome-Based Analysis of Viral Incidence in Jujube (Ziziphus jujuba) in Korea (메타전사체 분석을 이용한 국내 대추나무의 바이러스 감염실태)

  • Hong-Kyu Lee;Seongju Han;Sangmin Bak;Minseok Kim;Jean Geung Min;Hak ju Kim;Dong Hyun Kang;Minhui Kim;Wonyoung Jeong;Seungbin Baek;Minjoo Yang;Taegun Lim;Chanhoon An;Tae-Dong Kim;Chung Youl Park;Jae Sun Moon;Su-Heon Lee
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.276-285
    • /
    • 2023
  • This work investigated the viral infection in jujube plants in Korea. A total of 61 samples with the symptoms of putative viral infection were collected from experimental fields and orchards. Thereafter, the samples were subjected to metatranscriptome analysis, Reverse transcription polymerase chain reaction analysis, and nucleotide sequence analysis. These analyses identified the presence of two DNA viruses, jujube-associated badnavirus (JuBV), jujube mosaic-associated virus (JuMaV), and one RNA virus, jujube yellow mottle-associated virus (JYMaV). All samples collected were confirmed to be infected by at least one of the three viruses, with most showed multiple infections. The detection rates of JuBV, JYMaV, and JuMaV were 100%, 90.2%, and 8.2%, respectively. Only three combinations of viral infections were found: 9.8% of samples showed single infection of JuBV, 82.0% showed double infection of JuBV+JYMaV, and 8.2% showed triple infection of JuBV+JYMaV+JuMaV. Sequence analysis of the three viruses showed very high homology with respective virus isolates reported in China. This study is predicted to provide fundamental data to produce virus-free jujube seedlings and represents the first report of JuBV and JuMaV infection in Korea.