• Title/Summary/Keyword: Bactericidal

Search Result 584, Processing Time 0.024 seconds

Bactericidal Efficacy of Fumagari OPP®, Fumigant Against Escherichia coli and Salmonella typhimurium (훈증소독제, Fumagari OPP®의 Escherichia coli와 Salmonella typhimurium에 대한 살균효과)

  • Park, Eun-Kee;Kim, Yongpal;Yu, Eun-Ah;Yoo, Chang-Yeol;Choi, Hyunju;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.234-240
    • /
    • 2013
  • This test was performed to evaluate the bactericidal efficacy of Fumagari OPP$^{(R)}$, fumigation disinfectant, containing 20% ortho-phenylphenol against Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium). In preliminary tests, both E. coli and S. typhimurium working culture suspension number (N value) was $4.0{\times}10^8$ CFU/mL. And all of the colony numbers on the carriers exposed the fumigant (n1, n2, n3) were higher than 0.5N1 (the number of bacterial test suspentions by pour plate method), 0.5N2 (the number of bacterial test suspentions by filter membrane method) and 0.5N1, respectively. In addition, the mean number of bacteria recovered on the control-carriers (T value) was $3.4{\times}10^6$ CFU/mL. In the bactericidal effect of the fumigant, the reduction number of S. typhimurium and E. coli (d value) was 5.26 and 5.64 logCFU/mL, respectively. According to the French standard for the fumigant, the d value for the effective bactericidal fumigant should be over than 5 logCFU/mL. With the results of this study, Fumagari OPP$^{(R)}$ has an effective bactericidal activity, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with pathogenic bacteria.

Bactericidal Efficacy of a Disinfectant Composed of Povidone-iodine Against Clostridium Perfringens and Mycobacterium Fortuitum

  • Cha, Chun-Nam;Park, Eun-Kee;Cho, Youyoung;Yoo, Chang-Yeul;Tutkun, Engin;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.109-114
    • /
    • 2015
  • Clostridium perfringens (C. perfringens) and Mycobacterium fortuitum (M. fortuitum) are associated with considerable diseases in animals and human. In this study, the disinfection efficacy of a commercial disinfectant composed to povidone-iodine (PVI) was evaluated against C. perfringens and M. fortuitum. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to C. perfringens and M. fortuitum for 30 min at $4^{\circ}C$. The disinfectant and test bacteria were diluted with hard water (HW) or organic matter suspension (OM) according to treatment condition. On HW condition, the bactericidal activity of the disinfectant against C. perfringens and M. fortuitum was 50 and 80 fold dilutions, respectively. On OM condition, the bactericidal activity of the disinfectant against both C. perfringens and M. fortuitum was 15 fold dilutions. As the disinfectant composed to PVI possesses bactericidal efficacy against C. perfringens and M. fortuitum, the disinfectant solution can be used to control the spread of bacterial diseases.

Bactericidal Efficacy of a Fumigation Disinfectant Containing Paraformaldehyde Against Salmonella Typhimurium

  • Cha, Chun-Nam;Son, Song-Ee;Yoo, Chang-Yeul;Park, Eun-Kee;Jung, Ji-Youn;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.216-221
    • /
    • 2016
  • This study was performed to evaluate the bactericidal efficacy of a fumigation disinfectant containing 35% paraformaldehyde against Salmonella Typhimurium (S. Typhimurium). In this study, the efficacy test of a fumigant against S. Typhimurium was carried out according to French standard NF T 72-281. The S. Typhimurium working culture suspension number (N value), all bacteria numbers on the carriers exposed to the fumigant (n1, n2, and n3), the number of bacterial suspensions by the pour plate method (N1), the number of bacterial suspensions by the filter membrane method (N2), and the mean number of bacteria recovered on the control carriers (T value), were obtained from the preliminary test. In addition, the reduction number of S. Typhimurium exposed to the fumigant (d value) was calculated using the T value, the mean number of bacteria in the recovery solution (n'1) and the mean number of bacteria on carriers plated in agar (n'2). The N value was $5.5{\times}10^8$ colony forming units (CFU)/mL, and n1, n2, and n3 were higher than 0.5N1, 0.5N2 and 0.5N1, respectively. Additionally, the T value was $3.5{\times}10^6CFU/carrier$. In terms of the bactericidal effect of the fumigant, the d value was 5.25. According to the French standard for fumigants, the d value for an effective bactericidal fumigant should be greater than 5. The results indicated that the fumigant containing 35% paraformaldehyde had an efficient bactericidal activity against S. Typhimurium, and, therefore, can be used to disinfect food materials and kitchen appliances contaminated with foodborne bacteria.

Bactericidal Effects of Nano-silver Liquid Against Various Plant Pathogenic Bacteria (은 나노 용액의 식물병원성 세균에 대한 살균활성)

  • Kim, Sang-Woo;Min, Ji-Seon;Lee, Youn-Su
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.130-133
    • /
    • 2009
  • We have conducted in vitro experiments with nano-silver liquid for their effect against various plant pathogenic bacteria. Different types of nano-silver liquid WA-CV-WA13B, WA-AT-WB13R and WA-PR-WB13R were used. These are classified based on different manufacturing processes. The tested bacteria were provided by KACC. We experimented ten bacterial isolates in Clavibacter, Erwinia, Pseudomonas, Ralstonia, and Xanthomonas genera. In order to determine the level of concentrations of control effects, different concentrations (10, 25, 50, and 100 ppm) of each different nano-silver liquid were added in the culture media. As a result, WA-CV-WA13B showed high inhibition effect against C-1 at 10 ppm, and showed minor inhibition effects against P-6, X-1, and X-2. WA-AT-WB13R showed bactericidal effect against P-6 at 10 ppm. At 10 ppm, WA-AT-WB13R showed relatively high inhibition effects against C-1, X-1, and X-2. WA-PR-WB13R showed bactericidal effects against P-5, P-6 and X-2 at 10 ppm or higher concentrations. All the tested three nano-silver liquid showed bactericidal effects against all the tested plant pathogenic bacteria at concentrations of 25 ppm or higher. These results indicated the possible use of nano-silver liquid for the control of plant pathogenic bacteria.

Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms ($UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과)

  • 김중곤;신용국;이영상;김용호;김시욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The killing effects of two types(one-phase reactor and two-phase reactor) of UV-TiO$_2$photocatalytic system on the microorganisms have been studied. The UV-lamp which emits maximum 39 watts at 254 nm was prepared in these system. Three types of $TiO_2$ coating method were adopted. One type is thin film coated form on the quartz tube in the reactor and another one is surface rough coated form on the glass bead. The other one is $TiO_2$-mixed alginate bead form. UV irradiation was carried out for 1 min. In case of one phase reactor, the bactericidal efficiencies of E. coli by $TiO_2$-coated quartz tube and $TiO_2$-coated glass bead were 63.2% and 89.9%, respectively. In the air-bubbling system, the bactericidal efficiency was 95%, however, the efficiency decreased to 90.6% in the non-bubbling system. In the $TiO_2$-mixed alginate bead system, bactericidal efficiency was 86%. When $H_2O$$_2$ was treated (10, 15, 20, and 25 mg/ι) to the $TiO_2$-coated glass bead reactor, bactericidal efficiency significantly increased according to the concentration of $H_2$$O_2$. Two phase reactor showed more elevated efficiency. E. coli was more sensitive to the reaction than S. cerevisiae.

  • PDF

Bactericidal Efficacy of a Disinfectant Spray Containing a Grapefruit-seed Extract, Citric acid, Malic acid and Benzalkonium Chloride against Salmonella Typhimurium and Brucella ovis

  • Cha, Chun-Nam;Park, Eun-Kee;Jung, Ji-Youn;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.299-303
    • /
    • 2016
  • Salmonella spp. and Brucella spp. can cause considerable diseases on both humans and animals. In addition, these microorganisms cause the economic loss in animal farming and food industry. In this study, the disinfection efficacy of a disinfectant spray, composed to grapefruit seed extract, citric acid, malic acid and benzalkonium chloride, was evaluated against S. Typhimurium and B. ovis. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. The disinfectant and test bacteria were diluted with hard water (HW) or organic matter suspension (OM) according to treatment condition. On HW condition, the bactericidal activity of the disinfectant spray against S. Typhimurium and B. ovis was 5 and 4 fold dilutions, respectively. On OM condition, the bactericidal activity of the disinfectant spray was 2 and 1 fold dilutions against S. Typhimurium and B. ovis, respectively. As the disinfectant spray possesses bactericidal efficacy against foodborne pathogens such as S. Typhimurium and B. ovis, the disinfectant spray can be used to control the spread of bacterial diseases.

Resistance of Enterobacterianceae to antibacterial drugs I. Resistance of Eseherichia coli to nalidixic acid and six other antibacterial agents (장내 세균의 약제내성 - 제1보 대장균의 Nalidixic Acid 및 기타 항균제에 대한 내성)

  • Ha, Tai-You
    • The Journal of the Korean Society for Microbiology
    • /
    • v.5 no.1
    • /
    • pp.27-31
    • /
    • 1970
  • Nalidixic acid and six other drugs were studied for in vitro effectiveness against 200 strains of Escherichia coli isolated recently from healthy persons and bactericidal activity of ampicillin against one respective strain of Escherichia coli and Salmonella typhi isolated were also studied. The resutlts obtained by the plate dilution method showed the following percentage of resistance: kanamycin, 2.5%; streptomycin, 12.0%; ampicillin, 13.5%; tetracyclin, 15.5%; chloramphenicol, 17.5%; colistin sulfate, 19.5%. No strains were resistant to nalidixic acid, clearly indicating that nalidixic acid is the most effective drug tested. Ampicillin, measured by test-tube diltion method, was highly bactericidal against Salmonella typhi at the concentration of 2.5mcg/ml and against Escherichia coli at 5mcg/ml.

  • PDF

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

Autophagy in neutrophils

  • Shrestha, Sanjeeb;Lee, Jae Man;Hong, Chang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.

Studies on the synthesis and antibacterial action of 2-(5-nitro) furylacrylamino acid (2-(5-nitro)furylacrylamino acid류의 합성및 항균작용에 관한 연구)

  • 고현기
    • YAKHAK HOEJI
    • /
    • v.10 no.2_3
    • /
    • pp.15-19
    • /
    • 1966
  • In order to find 2-(5-nitro)furylacrylic acid derivatives possessing antimicrobial activity, nine new 2-(5-nitro)furylacrylamino acids were synthesized which were obtained by the action of 2-(5-nitro)furylacryla chloride on amino acids, such as $_{L}$-phenylalanine, glycine, $_{L}$-isoleucine, $_{L}$-glutamic acid, $_{DL}$-methionine, $_{L}$-threonine, $_{L}$-valine, $_{L}$-tryptophan and $_{DL}$-alanine, according to Schotten-Baumann method. These compounds generally showed a good bactericidal and bacteriostatic activity against Bacillus subtilis but were less effective against staphylococcus aureus, Proteus vulgaris and Escherichia coli. Of the above nine compounds, 2-(5-nitro)furylacryl glycine exhibited a good bactericidal activity.

  • PDF