• Title/Summary/Keyword: Bacterial wilt

Search Result 169, Processing Time 0.03 seconds

Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria

  • Nguyen, Hoa Thi;Yu, Nan Hee;Park, Ae Ran;Park, Hae Woong;Kim, In Seon;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1763-1772
    • /
    • 2017
  • This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds and investigate their antibacterial activity against various plant pathogenic bacteria. The methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola pv. pruni (Xap) with a minimum inhibition concentration (MIC) value of $250{\mu}g/ml$. Among the three solvent layers obtained from the methanol extract of P. nil seeds, only the butanol layer displayed the activity with an MIC value of $125{\mu}g/ml$ against Xap. An antibacterial fraction was obtained from P. nil seeds by repeated column chromatography and identified as pharbitin, a crude resin glycoside, by instrumental analysis. The antibacterial activity of pharbitin was tested in vitro against 14 phytopathogenic bacteria, and it was found to inhibit Ralstonia solanacearum and four Xanthomonas species. The minimum inhibitory concentration values against the five bacteria were $125-500{\mu}g/ml$ for the n-butanol layer and $31.25-125{\mu}g/ml$ for pharbitin. In a detached peach leaf assay, it effectively suppressed the development of bacterial leaf spot, with a control value of 87.5% at $500{\mu}g/ml$. In addition, pharbitin strongly reduced the development of bacterial wilt on tomato seedlings by 97.4% at $250{\mu}g/ml$, 7 days after inoculation. These findings suggest that the crude extract of P. nil seeds can be used as an alternative biopesticide for the control of plant diseases caused by R. solanacearum and Xanthomonas spp. This is the first report on the antibacterial activity of pharbitin against phytopathogenic bacteria.

Inhibition Effect of Avirulent Pseudomonas solanacearum on the Multiplication of Virulent Isolate in Tobacco Plant (비병원성균주 전처리에 의한 담배세균성마름병균(Pseudomonas solanacearum)의 식물체내 침입 및 증식억제)

  • Lee Young Keun;Kim Jeong Hwa;Park Won Mok
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.114-120
    • /
    • 1986
  • Significant reduction in disease severity of bacterial wilt (Pseudomonas solanacearum) on the susceptible tobacco cultivar BY 4 was observed until mid-July in a naturally infested field when bacterial suspensions of avirulent isolate were applied to tobacco root zones at one day before and fourty days after transplanting into the field. However, rapid increase in disease severity after mid-July resulted in the same severity $(70\%)$ as on cultivar BY 4 without the application of the avirulent bacterial suspension at the end of the season. Yield increase in cultivar BY 4 was $35\%$ due to the treatment, resulting in $10\%$ price increase. The suppression me chanism did not appear to be dependent upon the inhibition of the virulent bacterial multiplication by the avirulent bacteria in tobacco rhizosphere soil because of no significant difference in the density of the patho genic bacteria between treated and untreated plant root zones. However. penetration of the virulent bacteria into the root systems and their multiplication in tobacco stem were inhibited remarkably by preinoculation with avirulent one, suggesting that those are related to the suppression of disease incidence.

  • PDF

Control of Tomato Wilt Disease by Amending pH of Nutrient Solution in Hydroponic System (토마토 수경재배에서 배양액의 pH 조절에 의한 풋마름병 방제)

  • Lee Jung-Sup;Choi Ji-Ho;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.193-197
    • /
    • 2005
  • The effect of pH on the survival of R. solanacearum and its transmission via roots of tomato in hydroponic culture were studied in laboratory and greenhouse. In laboratory experiment, R. solanacearum could not survive for 24h in nutrient solution with pH of $4{\cdot}0;or\;4{\cdot}5$, while 1, 14, 51 and $62\%$ of inoculum survived at pH $5{\cdot}0,\;5{\cdot}6\;and\;6{\cdot}5$, respectively. When tomato plants were inoculated with R. solanacearum through wounds on the stems, the bacteria moved downward from the inoculation site to the roots and infectious bacteria were released from the roots into the nutrient solution. Of two pH regimes tested in greenhouse nutrient-film technique(NFT) culture, the R. solanacearum population was significantly lower in pH 5.0 than in pH 6.5 in most sampling data. In treatments in which R. solanacearum was introduced by transplanting two root-inoculated plants, significantly move plants developed wilt at pH $6{\cdot}5$(34 out of 48 plants) than at pH 5.0(11 out of 48 plants). In addition, when the bacterium was introduced by transplanting two stem-inoculated plants at pH $6{\cdot}5$, seven out of 24 plants developed wilt.

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings (외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향)

  • Park, Song-Yi;Kim, Heung-Tae;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.329-336
    • /
    • 2014
  • As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.

Survey of Disease Occurrence in Major Tobacco Fields of Korea, 2011 (2011년 한국 연초산지의 병해 발생상황)

  • Jun, Mi-Hyun;Lee, Young-Keun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Major diseases of tobacco plants were surveyed throughout the Korea in 2011. Mosaic, bacterial wilt and hallow stalk were most severe during the harvest season on not only flue-cured tobacco plants but also burley tobacco plants. On flue-cured tobacco plants, mosaic caused by potato virus Y were more severe than those by tobacco mosaic virus or cucumber mosaic virus. The mosaic caused by potato virus Y was severe at Yeongwol and Chungju. On burley tobacco plants, mosaic were more severe at Jeongeup and Gochang than those at Chungnam and Jeonnam. A negative correlation between the mosaic incidence and the precipitation was recognized. On the other hand, there was a positive correlation between the incidence of hallow stalk incidence of flue-cured tobacco plants in harvesting stage and the precipitation during June was recognized significantly.

EFFECTS OF THE CULTURE FILTRATE OF PSEUDOMONAS SOLANACEARUM ON THE CALLUS AND CUTTING OF TOBACCO PLANT (담배 Callus 및 삽수에 대한 세균성마름병균 (Pseudomonas solanacearum) 배양여액의 처리효과)

  • Yi, Y.K.;Lee, J.Y.;Kim, J.H.
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.1
    • /
    • pp.3-6
    • /
    • 1985
  • The typical dark brown stripe symptom of bacterial wilt disease was observed in the cuttings of tobacco stem treated with the culture filtrate of virulent Pseudomonas solanaceamm. And the tobacco callus create.4 with that culture filtrate showed deterioration of the callus 2 days after the treatment. On the contrary, the cuttings and the callus treated with the culture filtrate of the avirulent bacteria expressed no typical symptom and vigorous growth respectively. Therefore it was suggested that certain toxin which might be produced by the virulent bacteria could break down tobacco cells.

  • PDF

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Fermentation of a Potential Biocontrol Agent, Bacillus amyloliquefaciens SKU-78 Strain (풋마름병균의 길항세균 Bacillus amyloliquefaciens SKU-78의 대량 배양 조건 확립)

  • Kim, Shin-Duk;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.84-86
    • /
    • 2014
  • Mass production of biocontrol agent is an essential step for its commercial use. Media composition and culture conditions for production of Bacillus amyloliquefaciens SKU-78, a potential biocontrol agent against bacterial wilts, were optimized by a flask culture. Low cost media combining nitrogen and carbon sources were tested. Maximum cell growth (> $2{\times}10^9$ CFU/ml) was obtained in a medium of 5% soy flour combined with 3% corn starch after 24 h cultivation. The optimum initial pH, temperature and shaking speed was 5.5, $30^{\circ}C$ and 150-250 rpm, respectively. Fermentation of SKU-78 was scaled up in 30 L fermenter and the profiles of cell density, pH, dissolved oxygen and spore formation were recorded. After 8 h lag phase, exponential growth occurred and reached at maximum viable cell number ($1.2{\times}10^{11}$ CFU/ml) after 20 h. The SKU-78 strain grown in a low cost medium exhibited the high suppression of bacterial wilts. The results indicate that SKU-78 strain can be produced in a low cost medium and provide a basis for scaling up to industrial level.