• Title/Summary/Keyword: Bacterial soft rot

Search Result 104, Processing Time 0.031 seconds

Isolation of CMCase Isozymes from Phytopathogenic Erwinia chrysanthemi PY35 (무름병균 Erwinia chrysanthemi PY35의 CMCase isozymes 분리)

  • Park, Sang-Ryeol;Cho, Soo-Jeong;Yun, Han-Dae
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.199-204
    • /
    • 1999
  • Soft-rot bacterial pathogen, Erwinia sp., was isolated from chinese cabbage tissue showing soft-rot symptom. This bacterial strain caused soft-rot to chinese cabbage and potato, and identified as Erwinia chrysanthemi PY35(Ech PY35). Ech PY35 have extracellular CMCase, pectinase, pectate lyase, and protease activity, but not hemicellulase activity. The results of the microscopy showed that chinese cabbage tissue and potato tissue were macerated by infection of Ech PY35. In analysis of the CMCases activity in the total protein of Ech PY35, three CMCases were detected as intracellular protein while two CMCases were as extracellular protein by CMC-SDS-PAGE direct stain method.

  • PDF

Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

  • Kim, Min Keun;Lee, Sun Mi;Seuk, Su Won;Ryu, Jae San;Kim, Hee Dae;Kwon, Jin Hyeuk;Choi, Yong Jo;Yun, Han Dae
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.276-287
    • /
    • 2017
  • RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.

New Bacterial Soft Rot of Ornamental Foliage Plants by Erwinia carotovora subsp. carotovora in Korea (Erwinia carotovora subsp. carotovora에 의한 관엽식물의 새로운 세균성무름병)

  • 최재을;이은정
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.19-22
    • /
    • 2000
  • Ten samples were collected from soft rotted ornamental foliage plants, that were cultivated in the vinyl-houses in Taejeon, Yeoju, Seongnam, Kimhae and Cheju during 1998 to 1999. Studies on morphological, cultural, physiological and pathological characteristics indicated that the bacteria from Begonia heimalis, Saintpaulia sp. and Clivia miniata were Erwinia carotovora subsp. carotovora, E. carotovora subsp. carotovora the first description of bacteria which caused bacterial soft on Begonia heimalis, Saintpaulia sp., and Clivia miniata in Korea.

  • PDF

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Agronomic characteristics and field resistance to bacterial soft rot of transgenic potato overexpressing the soybean calmodulin 4 gene (SCaM4) (SCaM4 과발현 형질전환 감자의 농업적 특성 및 감자 무름병 저항성 평가)

  • Sohn, Hwangbae;Cho, Kwangsoo;Cho, Jihong;Gwon, Ohgeun;Cheon, Chunggi;Choi, Jigyeong;Chung, Woosik;Lee, Shin Woo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.295-299
    • /
    • 2012
  • We performed in vitro assay and field trials to assess levels of changes in intrinsic properties and resistance against soft rot of the potato cv. Dejima upon the introduction of a soybean calmodulin 4 gene (SCaM4). Field trials with four lines overexpressing SCaM4 gene were conducted over two seasons, and harvested tubers were evaluated in bioassay for resistance to Pectobacterium carotovorum ssp. carotovorum. The SCaM4 transgenic potato lines inoculated with $10^8$ CFU/ml of P. carotovorum ssp. carotovorum showed enhanced resistance compared to control. Among the SCaM4 transgenic lines, the transgenic line SCaM4-4 exhibited the highest tolerance to soft rot in vitro assays, so did in field trials. In the field trial, the soft rot resistance of SCaM4-4 line was more than 5 times higher compared to that of control cultivar, Dejima. The major agronomic characteristics of the SCaM4 transgenic lines were not different from those of the nontransgenic 'Dejima'. The result demonstrated that the transformation of a calmodulin 4 gene was a successful strategy in development of potato cultivar enhanced to soft rot.