• Title/Summary/Keyword: Bacterial metabolites

Search Result 155, Processing Time 0.024 seconds

Molecular Cloning and Characterization of myo-Inositol Dehydrogenase from Enterobacter sp. YB-46 (Enterobacter sp. YB-46의 myo-Inositol dehydrogenase 유전자 클로닝과 특성분석)

  • Park, Chan Young;Kim, Kwang-Kyu;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.102-110
    • /
    • 2018
  • A bacterial strain capable of metabolizing myo-inositol (MI) and converting to other substances was isolated from soil of orchard. The isolate, named YB-46, was grown on minimal medium supplemented with MI as the sole carbon source and was presumed to belonging to genus Enterobacter according to the 16S rDNA sequence. Escherichia coli transformant converting MI into unknown metabolites was selected from a metagenomic library prepared with fosmid pCC1FOS vector. Plasmid was isolated from the transformant, and the inserted gene was partially sequenced. From the nucleotide sequence, an iolG gene was identified to encode myo-inositol dehydrogenase (IolG) consisting of 336 amino residues. The IolG showed amino acid sequence similarity of about 50% with IolG of Enterobacter aerogenes and Bacillus subtilis. The His-tagged IolG (HtIolG) fused with hexahistidine at C-terminus was produced and purified from cell extract of recombinant E. coli. The purified HtIolG showed maximal activity at $45^{\circ}C$ and pH 10.5 with the highest activity for MI and D-glucose, and more than 90% of maximal activity for D-chiro-inositol, D-mannitol and D-xylose. $K_m$ and $V_{max}$ values of the HtIolG for MI were 1.83 mM and $0.724{\mu}mol/min/mg$ under the optimal reaction condition, respectively. The activity of HtIolG was increased 1.7 folds by $Zn^{2+}$, but was significantly inhibited by $Co^{2+}$ and SDS.

The current status of fumonisin toxicosis in domestic animals: A review (가축의 fumonisin 중독증에 대한 최근 연구 동향 : 종설)

  • Lim, Chae-woong;Rim, Byung-moo
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.405-416
    • /
    • 1995
  • FBs, secondary metabolites of several species of Fusaria, especially Fusarium moniliforme and F proliferatum, are commonly contaminated in com and other food grains throughout the world. Only recently identified, these mycotoxins have been associated field outbreaks of ELEM in horses and PPE in pigs. Currently, naturally or experimentally induced FB toxicosis has been studied in poultry, ruminants and rabbits. Poultry fed FB showed decreased growth rate, performance, and immune competence, as well as embryopathic, and embryocidal effects, and ricktes. Ruminants seem to be relatively less susceptible to FBs than other doestic animal. FB toxicosis reveals that liver is a target organ in all species, although other organs are affected in a species specific manner. Recently, the main target organs for $FB_1$ toxicity in rabbits was shown to be the kidney. Even low concentrations of FBs are likely to be a problem for animal health. A current study being conducted showed that feed containing low level of $FB_1$ reduces the ability of pulmonary intravascular macrophages in pig to clear blood-borne particles which would increase the susceptibility of animals to bacterial disease. The mechanism of FB toxicity remains unknown, but may be related to altered sphingolipid biosynthesis by inhibiting sphinganine N-acyltransferase. Elevations of serum and tissue SA:SO ratio have been observed in horse, pig, chicken, turkey, and rabbit, which could could serve as in effective biomarker for consumption of FB-containing feeds. There is limited information detailing dose-effect relationships either from field cases or in the laboratory. More research on the factors, including the prevalence and tolerance levels of FBs in feedstuffs that cause domestic animal disease associated with FBs, is urgently needed.

  • PDF

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp. (북극 지의류 Stereocaulon spp로부터 분리한 여러 미생물의 항산화 성질)

  • Kim, Mi-Kyeong;Park, Hyun;Oh, Tae-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.350-357
    • /
    • 2013
  • Lichens are symbiotic organisms composed of fungi, algae, or cyanobacteria which are able to survive in extreme environmental conditions ranging from deserts to polar areas. Some lichen symbionts produce a wide range of secondary metabolites that have many biological activities such as antibacterial, antifungal, antiviral, antitumor, antioxidant and anti-inflammatory etc. Among the symbionts of lichens, of the bacterial communities of lichen symbionts little is known. In this study, we isolated 4 microbial species from the Arctic lichen Stereocaulon spp. and evaluated their antioxidant properties using 1,1-diphenyl-2-picryl-hydrazyl assay as well as 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) assay. Total phenolic contents and total flavonoid contents were also measured. A potent radical scavenging activity was detected in a number of the lichen extracts. Among the 4 species tested in this study, the ethyl acetate extract of Bosea vestrisii 36546(T) exhibited the strongest free radical scavenging activity, with an inhibition rate of 86.8% in DPPH and 75.2% in ABTS assays. Overall, these results suggest that lichen-bacteria could be a potential source of natural antioxidants.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

Collection of Soil Actinomycetes from Cheju Island and Screening for their Antibacterial Activities (제주도 토양방선균의 수집과 항균물질 생산균의 선별)

  • Chung, Wan-Seok;Kim, Chang-Jin;Ko, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.99-104
    • /
    • 1999
  • Soil actinomycetes of 703 strains were isolated from 25 sampling points in Cheju Island using 4 different media. Arginine glycerol salts agar containing soil extract was found to be the best medium for the isolation of soil actinomycetes. Soil samples from pasture land showed higher population and diversity of the actinomycetes than those from citrus field, forest, island, hill or valley. When the antibacterial activity of the 526 isolates was tested against three bacterial strains, Escherichia coli, Staphylococcus aureus and Pseudomonas solanacearum the frequency of the isolates with antibacterial activity varied much depending upon the media used for isolation and cultivation. BL106Ba, one of the 10 isolates that showed antibacterial activity against all the above 3 test strains, was chosen based upon the pH and heat stability of its antibacterial metabolites, and was identified as Streptomyces sp. based upon its cultural, morphological and physiological characteristics. The partially purified white crystalline substance obtained from the culture supematant of BL1063a through cation exchange chromatography(AG MP-50) and three times consecutive gel filtration(Sephadex G-10) showed high antimicrobial activity against gram positive and negative bacteria, but low activity against yeasts. The partially purified substance was found to contain at least four different compounds with antibacterial activity by both thin layer chromatography and high performance liquid chromatography.

  • PDF

The Algicidal Activity of Pseudoalteromonas sp. NH-12 against the Toxic Dinoflagellate Alexandrium catenella (유독성 와편모류 Alexandrium catenella에 대한 Pseudoalteromonas sp. NH-12의 살조능)

  • Jeoung, Nam-Ho;Son, Hong-Joo;Jeong, Seong-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • BACKGROUND: The aim of this study was to isolate and identify algicidal bacterium that tends to kill the toxic dinoflagellate Alexandrium catenella, and to determine the algicidal activity. METHODS AND RESULTS: Among of four algicidal bacteria isolated in this study, NH-12 isolate was the strongest algicidal activity against A. catenella. NH-12 isolate was identified on the basis of biochemical characteristics and analysis of 16S rRNA gene sequences. The isolate showed 97.67% homology with Pseudoalteromonas prydzensis ACAM $620^T$ (U85855), and was designated Pseudoalteromonas sp. NH-12. The optimal culture conditions of this isolate were $25^{\circ}C$, initial pH 8.0, and 3.0% (w/v) NaCl concentration. The algicidal activity of NH-12 was significantly increased to maximum value in the late of logarithmic phase of bacterial culture. As a result of 'cell culture insert' experiment, NH-12 is assumed to produce secondary metabolites, as an indirect attacker. When 10% culture filtrate of NH-12 was applied to A. catenella, over 99% of algal cells were destroyed within 24 h. In addition, the killing effects were increased in dose and time dependent manners. CONCLUSION(S): Taken together, our results suggest that Pseudoalteromonas sp. NH-12 could be a candidate for controlling of toxic algal blooms.

Antibacterial Activity against Food-poisoning Causing Bacteria and Characterization of Lactobacillus plantarum YK-9 Isolated from Kimchi (김치에서 분리한 세균인 Lactobacillus plantarum YK-9의 식중독 원인세균에 대한 항균활성 및 특성)

  • Song, You-Jin;Park, Su-Ho;You, Ji-Young;Cho, Yun-Seok;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.273-278
    • /
    • 2009
  • The purpose of this work was to investigate the antibacterial activity of Lactobacillus plantarum YK-9 isolated from fermented Kimchi. Morphological and biochemical characteristics of L. plantarum YK-9 were examined. Phylogenetic analysis using 16S rRNA sequencing was performed to identify the strain, and the strain could be assigned to Lactobacillus plantarum, designated as L. plantarum YK-9. The strain was registered in GenBank as [FJ669130]. During the incubation period of L. plantarum YK-9, the changes of bacterial growth and residual organic acids were monitored. HPLC was used to confirm the organic acids produced in the cultures as metabolites. L. plantarum YK-9 produced both lactic acid and acetic acid, which were responsible for the pH decrease during growth. Initial pH 7.0 of the cultures decreased to 3.6 at the incubation after 72 hours, and concentrations of lactic acid and acetic acid increased to approximately 588.7 mM and 255.5 mM, respectively. The antibacterial activities against food-poisoning causing bacteria were examined with 20-fold concentrated culture supernatants from L. plantarum YK-9, and the antibacterial effects were clearly observed against all the bacteria tested in this work.

Novel Sporichthyaceae Bacterium Strain K-07 Skin Barrier, Moisturizing and Anti-inflammatory Activity (신규 Sporichthyaceae Bacterium Strain K-07 배양액의 피부장벽, 보습 및 항염증 활성)

  • Lee, Dong-Geol;Kim, Minji;Kang, Seunghyun;Kim, Youn-Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.137-147
    • /
    • 2017
  • The human skin is an ecosystem that provides habitat to various microorganisms. These comprise the skin microbiome and provide numerous benefits in addition to maintaining a symbiotic relation with the host. Various metabolites generated by the skin microbiome exert beneficial effects such as strengthening the skin barrier, and anti-aging and anti-inflammatory functions. In this study, we isolated a novel bacterium, designated Sporichthyacae strain K-07, from the human skin. Analysis of 16S rRNA gene sequences showed that the newly found bacterium shares 93.4% homology with the genus Sporichthya, thus corroborating the discovery of a novel genus. We further analyzed the effect of the novel strain in vitro, by treating HaCaT cells with bacterial metabolite products. Treatment resulted in changes in the mRNA expression levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, aquaporin3, IL-6, TNF-${\alpha}$, TSLP, and TARC. Specifically, the levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, and aquaporin3 were higher in strain K-07 metabolite product-treated cells than in control cells. These results showed that metabolite products of the novel strain K-07 enhanced the skin barrier and exert anti-inflammatory effects. Therefore, these metabolite products could be potentially used for treatment of skin conditions.

Biochemical Properties and Application of Bacteriocins Derived from Genus Bacillus (Bacillus속 세균 유래 박테리오신의 특성과 응용)

  • Ji-Young Lee;Dae-Ook Kang
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.91-101
    • /
    • 2023
  • Bacteriocins are antimicrobial peptides synthesized on ribosomes, produced by bacteria, that inhibit the growth of similar or closely related bacterial strains. Since the discovery of nisin, many bacteriocins with unique structures and various modes of antibacterial activity have been described, and genes encoding production, secretion, and immunity have been reported. Nisin is one of the bacteriocins applied in cheese, liquid eggs, sauces and canned foods. Many of the bacteriocins of the genus Bacillus belong to lantibiotics, which are modified peptides after translation. Other genus Bacillus also produce many non-lantibiotic bacteriocins. Bacteriocins of the genus Bacillus are sometimes becoming more important because of their broader antibacterial spectrum. Bacteriocins are considered attractive compounds in the food and pharmaceutical industries to prevent food spoilage and growth of pathogenic bacteria. Bacteriocins can be used as biological preservatives in a variety of ways in the food system. Biopreservation refers to extending shelf life and improving safety of foods using microorganisms and/or their metabolites. The demand for new antimicrobial compounds has generated great interest in new technologies that can improve food microbiological safety. Applications of bacteriocins are expanding from food to human health. Today, many researchers are shifting their interest in bacteriocins from food preservation to the treatment of bacteria that cause infections and antibiotic-resistant diseases. This exciting new era in bacteriocin research will undoubtedly lead to new inventions and new applications. In this review, we summarize the various properties and applications of bacteriocins produced by the genus Bacillus.