• Title/Summary/Keyword: Bacterial metabolites

Search Result 155, Processing Time 0.024 seconds

Control efficacy of BtPlus against two mosquitoes, Aedes koreicus and Culex vagans (한국숲모기와 줄다리집모기에 대한 비티플러스 방제 효과)

  • Kim, Yonggyun;Minoo, Sajjadian;Ahmed, Shabbir
    • Korean journal of applied entomology
    • /
    • v.59 no.1
    • /
    • pp.41-54
    • /
    • 2020
  • Two mosquito species were collected in still-water near farming area in Andong, Korea. Based on morphological characters, these two mosquitoes were identified as Aedes koreicus and Culex vagans, respectively. DNA barcode analyses supported the identification. An entomopathogenic bacterium, Bacillus thuringiensis subsp. israelensis (BtI), exhibited insecticidal activities against the two mosquito species and its virulence was more potent than that of B. thuringiensis subsp. kurstaki. It has been known that the bacterial metabolites of Xenorhabdus spp. suppress insect immunity and enhance pathogenicity of B. thuringiensis. This study tested the effect of the bacterial culture broth of Xenorhabdus spp. on enhancing BtI pathogenicity. Among three Xenorhabdus spp., culture broth of X. ehlersii (Xe) was relatively effective to enhance BtI pathogenicity against both mosquito species. Indeed, organic extracts of Xe culture broth suppressed the hemocyte-spreading behavior, suggesting the presence of immunosuppressant in the culture broth. These results suggest a formulation of BtPlus by mixing BtI spore and Xe culture broth to be applied to control the two mosquito species.

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

The Effects of Dictamni Radicis Cortex on the iNOS Expression and Proinflammatory Cytokines Production (백선피의 iNOS발현과 염증성사이토카인의 생성에 미치는 영향)

  • Park, Jeong-Suk;Shin, Tae-Yong;Kim, Dae-Keun;Lee, Jae-Hyeok
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • The aim of the present study is to investigate the cytokine production inhibitory effect of a Dictamni Radicis Cortex (DRC). DRC has been commonly used as important medicinal herb in China and it used to control eczema, atopic dermatitis, fever and inflammatory diseases. Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the DRC on proinflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of DRC, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the DRC reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the DRC may have an anti-inflammatory property through suppressing inflammatory mediator productions.

Characterization of a Phenazine and Hexanoyl Homoserine Lactone Producing Pseudomonas aurantiaca Strain PB-St2, Isolated from Sugarcane Stem

  • Mehnaz, Samina;Baig, Deeba Noreen;Jamil, Farrukh;Weselowski, Brian;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1688-1694
    • /
    • 2009
  • A novel strain of fluorescent pseudomonad (PB-St2) was isolated from surface-sterilized stems of sugarcane grown in Pakistan. The bacterium was identified as Pseudomonas aurantiaca on the basis of 16S rRNA gene sequence analysis and results from physiological and biochemical characteristics carried out with API50 CH and QTS 24 bacterial identification kits. Assays using substrate-specific media for enzymes revealed lipase and protease activities but cellulase, chitinase, or pectinase were not detected. The bacterium was unable to solubilize phosphate or produce indole acetic acid. However, it did produce HCN, siderophores, and homoserine lactones. In dual culture assays on agar, the bacterium showed antifungal activity against an important pathogen of sugarcane in Pakistan, namely Colletotrichum falcatum, as well as for pathogenic isolates of Fusarium oxysporium and F. lateritium but not against F. solani. The antifungal metabolites were identified using thin-layer chromatography, UV spectra, and MALDI-TOFF spectra and shown to be phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine (2-OH-PHZ), and N-hexanoyl homoserine lactone (HHL) (assessed using only TLC data). The capacity of this bacterium to produce HCN and 2-OH-PHZ, as well as to inhibit the growth of C. falcatum, has not been previously reported.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Development of Fecal Microbial Enzyme Mix for Mutagenicity Assay of Natural Products

  • Yeo, Hee-Kyung;Hyun, Yang-Jin;Jang, Se-Eun;Han, Myung-Joo;Lee, Yong-Sup;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.838-848
    • /
    • 2012
  • Orally administered herbal glycosides are metabolized to their hydrophobic compounds by intestinal microflora in the intestine of animals and human, not liver enzymes, and absorbed from the intestine to the blood. Of these metabolites, some, such as quercetin and kaempherol, are mutagenic. The fecal bacterial enzyme fraction (fecalase) of human or animals has been used for measuring the mutagenicity of dietary glycosides. However, the fecalase activity between individuals is significantly different and its preparation is laborious and odious. Therefore, we developed a fecal microbial enzyme mix (FM) usable in the Ames test to remediate the fluctuated reaction system activating natural glycosides to mutagens. We selected, cultured, and mixed 4 bacteria highly producing glycosidase activities based on a cell-free extract of feces (fecalase) from 100 healthy Korean volunteers. When the mutagenicities of rutin and methanol extract of the flos of Sophora japonica L. (SFME), of which the major constituent is rutin, towards Salmonella typhimurium strains TA 98, 100, 102, 1,535, and 1,537 were tested using FM and/or S9 mix, these agents were potently mutagenic. These mutagenicities using FM were not significantly different compared with those using Korean fecalase. SFME and rutin were potently mutagenic in the test when these were treated with fecalase or FM in the presence of S9 mix, followed by those treated with S9 mix alone and those with fecalase or FM. Freeze-dried FM was more stable in storage than fecalase. Based on these findings, FM could be usable instead of human fecalase in the Ames test.

Biocontrol of Maize Diseases by Microorganisms (미생물을 활용한 옥수수병의 생물학적 방제)

  • Jung-Ae, Kim;Jeong-Sup, Song;Min-Hye, Jeong;Sook-Young, Park;Yangseon, Kim
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.195-203
    • /
    • 2022
  • Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.

Structure Analysis of pmcABCDEFT Gene Cluster for Degradation of Protocatechuate from Comamonas sp. Strain DJ-12 (Comamonas sp. Strain DJ-12로부터 Protocatechuate의 분해에 관여하는 pmcABCDEFT 유전자군의 구조 분석)

  • Kang Cheol-Hee;Lee Sang-Mhan;Lee Kyoung;Lee Dong-Hun;Kim Chi-Kyung
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2005
  • Comamonas sp. strain DJ-12 is a bacterial isolate capable of degrading of 4-chlorobiphenyl (4CB) as a carbon and energy source. The degradation pathway was characterized as being conducted by consecutive reactions of the meta-degradation of 4CB, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-degradation of protocatechuate to product TCA metabolites. The 6.8 kb fragment from the chromosomal DNA of Comamonas sp. strain DJ-12 included the genes encoding for the meta-degradation of PCA; the genes of protocatechuate 4,5-dioxygenase alpha and beta subunits (pmcA and pmcB), 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (pmcC), 2-pyrone-4,6-dicarboxylate hydrolase (pmcD), 4-oxalomesaconate (OMA) hydratase(pmcE), 4-oxalocitramalate (OCM) aldolase (pmcF), and transporter gene (pmcT). They were organized in the order of pmcT-pmcE-pmcF-pmcD-pmcA-pmcB-pmcC. The amino acid sequences deduced from the nucleotide sequences of pmcABCDEFT genes from Comamonas sp. strain DJ-12 exhibited 94 to $98\%$ homologies with those of Comamonas testosteroni BR6020 and Pseudomonas ochraceae NGJ1, but only 52 to $74\%$ with homologies Sphingomonas paucimobilis SYK-6, Sphingomonas sp. LB126, and Arthrobacter keyseri 12B.

Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

  • Wang, Xiang;Huang, Yanqiu;Sheng, Yanqing;Su, Pei;Qiu, Yan;Ke, Caihuan;Feng, Danqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.460-470
    • /
    • 2017
  • Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes (rpoD, gyrB, rctB, and toxR). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis, with $EC_{50}$ values of $24.45{\mu}g/ml$ for indole, $50.07{\mu}g/ml$ for 3-formylindole, and $49.24{\mu}g/ml$ for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus ($EC_{50}$ values of 8.84, 0.43, and $11.35{\mu}g/ml$, respectively) and the marine bacterium Pseudomonas sp. ($EC_{50}$ values of 42.68, 69.68, and $39.05{\mu}g/ml$, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

Cometabolism of $\omega$-Phenylalkanoic Acids with Butyric Acid for Efficient Production of Aromatic Polyesters in Pseudomonas putida BM01

  • Song, Jae-Jun;Choi, Mun-Hwan;Yoon, Sung-Chul;Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.435-442
    • /
    • 2001
  • Poly(3-hydroxy-5-phenylvalerate) [P(3HPV)] was efficiently accumulated from 5-phenylvalerate (5PV) in Pseudomonas putida BM01 in a mineral salts medium containing butyric acid (BA) as the cosubstrate. A nove aromatic copolyester, poly(5 mol% 3-hydroxy-4-phenylbutyrate-co- 95 mol% 3-hydroxy-6-phenylhexanoate) [P(3HPB-co-3HPC)] was also synthesized from 6-phenylhexanoate (6PC) plus Ba. The two aromatic polymers, P(3HPV) and P(3HPB-co-3HPC), were found to be amorphous and showed different glass-transition temperatures at $15^{\circ}C$ and $10^{\circ}C$, respectively. When the bacterium was grown ina medium containing 20 mM 5PV as the sole carbon source for 140 h, 0.4 g/l of dry cells was obtained in a flask cultivation and 20 wt% of P(3HPV) homopolymer was accumulated in the cells. However, when it was grown with a mixture of 2 mM 5PV and 50 mM BA for 40 h, the yield of dry biomass was increased up to 2.5 g/l and the content of P(3HPV) in the dry cells was optimally 56 wt%. This efficient production of P(3HPV) homopolymer from the mixed substrate was feasible because BA only supported cell growth and did not induce any aliphatic PHA accumulation. The metabolites released into the PHA synthesis medium were analyzed using GC or GC/MS. Two $\beta$-oxidation derivatives, 3-phenylpropionic acid and trans-cinnamic acid, were found in the 5V-grown cell medium and these comprised 55-88 mol% of the 5PV consumed. In the 6PC-grown medium containing Ba, seven ${\beta}$-oxidation and related intermediates were found, which included phenylacetic acid, 4-phenylbutyric acid, cis-4-phenyl-2-butenoic acid, trans-4-phenyl-3-butenoic acid, trans-4-phenyl-2-butenoic acid, 3-hydroxy-4-phenylbutyric acid, and 3-hydroxy-6-phenylhexanoic acid. Accordingly, based on the metabolite analysis, PHA synthesis pathways from the two aromatic carbon sources are suggested.

  • PDF