• 제목/요약/키워드: Bacterial metabolites

검색결과 155건 처리시간 0.024초

Effectiveness of Antagonistic Bacterial Metabolites to Control Rhizoctonia solani on Lettuces and Fusarium oxysporum on Tomatoes

  • Vu, Van Hanh;Thi, Quyen Dinh;Rita, Grosch;Dung, Nguyen Ngoc
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.70-78
    • /
    • 2013
  • Rhizoctonia solani and Fusarium oxysporum cause yield losses in numerous economically important crops. To develop a bio-control agent, cell free extracellular compounds (ECs) of 5 bacterial strains Burkholdria sp. L1, Pseudomonas sp. L4, Pseudomonas chlororaphis VN391, Bacillus subtilis VN21 and Enterobacter sp. VN99 from Vietnamese fields, which reduced levels of R. solani root rot in lettuces and F. oxysporum root rot in tomatoes, were investigated. In a growth chamber, ECs of all antagonists markedly enhanced the biomass of lettuces (10 to 14.1%) and tomatoes (11.38 to 13.88%). In greenhouses, the disease's severity on both crops treated with ECs of the antagonists was reduced significantly and biomass losses in the plants decreased markedly. The reduction level of R. solani root rot in lettuces was 75, 66.7, 50, and 16.7% by ECs of strains L1, L4, VN21 and VN391, respectively. The biomass of lettuces increased markedly by 29.13%, 21.67%, and 23.4% by ECs of strains L1, L4 and VN21, respectively. Similarly, the reduction levels of F. oxysporum root rot in tomatoes was 76.3, 75, 41.7 and 25% by ECs of strain L1, L4, VN21 and VN391, respectively, and the biomass was significantly enhanced by 14.42, 12.7 and 13%, respectively. The ECs of strain L1 exhibited the most effective bio-control agents to suppress R. solani and F. oxysporum.

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast

  • Jeon, Hyunwoo;Durairaj, Pradeepraj;Lee, Dowoo;Ahsan, Md Murshidul;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2076-2086
    • /
    • 2016
  • Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at $30^{\circ}C$. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

라벤더와 로즈마리 에센셜 오일 나노에멀션의 항균 활성 (Antimicrobial Activity of Lavander and Rosemary Essential Oil Nanoemulsions)

  • 김민수;이경원;박은진
    • 한국식품조리과학회지
    • /
    • 제33권3호
    • /
    • pp.256-263
    • /
    • 2017
  • Purpose: Essential oils are secondary metabolites of herbs and have antibacterial activities against foodborne pathogens. However, their applications for food protection are limited due to the hydrophobic and volatile natures of essential oils. Methods: In this study, essential oil nanoemulsions of rosemary and lavender were formulated with non-ionic surfactant Tween 80 and water using ultrasonic emulsification, and their antibacterial effects were determined. Results: The antibacterial activities of nanoemulsions were evaluated against 12 strains of 10 bacterial species, and significant antibacterial effects were observed against four Gram-positive and four Gram-negative bacteria but not against Streptococcus mutans and Shigella sonnei. In the disc diffusion test, the diameter of the inhibition zone proportionally increased with the concentration of nanoemulsions. Using cell turbidity measurement, minimum bactericidal concentration (MBC) of the nanoemulsions, which is the lowest concentration reducing viability of the initial bacterial inoculum by ${\geq}99.9%$, was significantly higher than the minimum inhibitory concentration (MIC) of the nanoemulsions. The largest bactericidal effects of lavender and rosemary essential oil nanoemulsions were observed against S. enterica and S. aureus, respectively. Conclusion: Nanoemulsion technique could improve antibacterial activity of essential oil nanoemulsions by increasing the solubility and stability of essential oils. Our findings shed light on the potential use of essential oil nanoemulsions as an alternative to chemical sanitizers in food protection.

Assessment of Root-Associated Paenibacillus polymyxa Groups on Growth Promotion and Induced Systemic Resistance in Pepper

  • Phi, Quyet-Tien;Park, Yu-Mi;Seul, Keyung-Jo;Ryu, Choong-Min;Park, Seung-Hwan;Kim, Jong-Guk;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1605-1613
    • /
    • 2010
  • Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F.;Pedreschi, Romina;Chew, Boon;Dowd, Scot E.;Kawas, Jorge R.;Noratto, Giuliana
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1247-1259
    • /
    • 2018
  • Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis

  • Hong, Sung Wook;Choi, Yun-Jeong;Lee, Hae-Won;Yang, Ji-Hee;Lee, Mi-Ai
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1057-1062
    • /
    • 2016
  • Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341FGC-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

식물 병 방제 및 생육촉진 효과를 나타내는 Pseudomonas parafulva PpaJBCS1880균주의 유전체 염기서열 (Complete genome sequencing of Pseudomonas parafulva PpaJBCS1880, a biocontrol and plant growth promoting agent)

  • 더타스와나리;와비오나알렉스;카켐보데이비드;이용훈
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.286-288
    • /
    • 2019
  • 벼 종자에서 분리한 Pseudomonas parafulva PpaJBCS1880 (PpaJBCS1880) 균주는 lipopeptide를 분비하여 식물의 세균 병원균에 대해 강력한 항균력을 나타냈다. 또한, PpaJBCS1880는 콩불마름병의 발생을 억제하였을 뿐만 아니라, 벼의 생육을 촉진하였다. 이에 따라, 본 연구에서는 PpaJBCS1880 균주의 전체염기서열을 해독하고 분석하였는데, 총 염기서열은 5,208,480 bp였고, GC 함량은 63.4%였다. 염색체는 4,487개의 단백질을 암호화하였고, 19개의 rRNA와 74개의 tRNA로 구성되어 있었다. 유전체의 분석을 통해 2차 대사산물인 lipopeptide, pyoverdine, phenazine 및 hydrogen cyanide 등을 생산하는 것을 확인하였는데, 이들 대사산물에 의해 항균력, 생물방제 및 생육촉진 효과를 나타내는 것으로 판단된다.

티베트 요거트에서 분리한 유산균의 병원성 세균 항균 효과 연구 (Antimicrobial Effects of Lactic Acid Bacteria Isolated from Tibetan Yogurt against Foodborne Pathogenic Bacteria)

  • 고주영;이지연;최한희;박선우;강석성
    • Journal of Dairy Science and Biotechnology
    • /
    • 제39권3호
    • /
    • pp.121-127
    • /
    • 2021
  • Yogurt is produced by bacterial fermentation of milk and contains lactic acid bacteria (LAB), which produce various metabolites such as organic acid, hydrogen peroxide, and bacteriocin. This study aimed to investigate cell-free supernatants (CFS) of LAB isolated from Tibetan yogurt. CFS (TY1, TY2, TY3, TY4, TY5, TY6, and TY7) from selected strains of LAB were co-incubated with four different foodborne pathogenic bacteria, namely E. coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. Inhibition of foodborne pathogenic bacterial growth was not affected in the presence of CFS (pH 6.5). In contrast, CFS without neutralization completely inhibited the growth of the bacteria. Furthermore, when the concentration of CFS (without neutralization) was changed to 1:4 and 1:8, a difference in inhibition was observed between Gram-positive and Gram-negative bacteria. CFS more effectively inhibited the growth of Gram-negative E. coli O157:H7 and S. Typhimurium than Gram-positive L. monocytogenes and S. aureus. These results suggest that organic acids in LAB may inhibit the growth of foodborne pathogenic bacteria, particularly Gram-negative bacteria.

Bioactivity of Metabolites from Actinomycetes Isolates from Red Sea, Egypt

  • Osman, Mohamed E.;El-nasr, Amany A. Abo;Hussein, Hagar M;Hamed, Moaz M
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.255-269
    • /
    • 2022
  • Actinomycetes isolated from marine habitats represent a promising source of bioactive substances. Here, we report on the isolation, identification, productivity enhancement and application of the bioactive compounds of Streptomyces qinglanensis H4. Eighteen marine actinomycetes were isolated and tested for resistance to seven bacterial diseases. Using 16S rRNA sequencing analysis (GenBank accession number MW563772), the most powerful isolate was identified as S. qinglanensis. Although the strain produced active compound(s) against a number of Gram-negative and Gram-positive bacteria, it failed to inhibit pathogenic fungi. The obtained inhibition zones were 22.0 ± 1.5, 20.0 ± 1, 16.0 ± 1, 12.0 ± 1, 22.0 ± 1 and 24.0 ± 1 mm against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 19404, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 10231 and Staphylococcus aureus ATCC6538, respectively. To maximize bioactive compound synthesis, the Plackett-Burman design was used. The productivity increased up to 0.93-fold, when S. qinglanensis was grown in optimized medium composed of: (g/l) starch 30; KNO3 0.5; K2HPO4 0.25; MgSO4 0.25; FeSO4·7H2O, 0.01; sea water concentration (%) 100; pH 8.0, and an incubation period of 9 days. Moreover, the anticancer activity of S. qinglanensis was tested against two different cell lines: HepG2 and CACO. The inhibition activities were 42.96 and 57.14%, respectively. Our findings suggest that the marine S. qinglanensis strain, which grows well on tailored medium, might be a source of bioactive substances for healthcare companies.

식물 유용 방선균 2종의 배양 및 포자생성 최적화 조건 탐색 (Optimization of Culture and Sporulation for Two Plant Beneficial Streptomyces Strains)

  • 김다란;곽연식
    • 식물병연구
    • /
    • 제29권2호
    • /
    • pp.174-183
    • /
    • 2023
  • 관행적 화학농약의 식물병 관리 및 치료의 한계적인 효과는 유익한 세균이나 미생물을 이용한 식물병 제어 방법 개발의 필요성을 나타낸다. 지속 가능한 농업은 특히 다양한 항생물질과 이차 대사 생성물을 생산하는 방선균의 농업적 중요성을 시사하며, Streptomyces globiosporus SP6C4균주와 Streptomyces sp. S8은 강력한 항균 작용을 가지고 있으며, 지속가능한 농업에서 작물 생장을 개선하기 위한 우수한 균주로 인정되고 있다. 본 연구에서는 다양한 질소원과 탄소원을 활용하여 대상 미생물 Streptomyces 두 균주의 생장을 촉진시키는 방법을 조사하였다. L-글루타민과 L-시스테인이 첨가된 조건에서 S. globiosporus SP6C4와 Streptomyces sp. S8 균주의 포자 생성 능력이 증가하였으며, 각 균주의 생장이 촉진되었다. 이러한 결과는 유용 미생물의 대량배양 기술의 범위 확장과 농업미생물의 실용화에 기여할 것으로 생각된다.