• Title/Summary/Keyword: Bacterial community

Search Result 665, Processing Time 0.032 seconds

Effect of Quartz Porphyry on Growth of Creeping Bentgrass (Agrostis stolonifera) and Soil Bacterial Community Structures (맥반석처리가 골프장 잔디의 생육과 토양미생물의 군집구조에 미치는 영향)

  • Koh, Sung-Cheol;Choi, Jung-Hye;Kim, Byung-Hyuk;Kim, Sang-Eun
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • Recently there are difficulties in management of golf courses because of an ever increasing demand for golf as a leisure sports. Hence natural minerals as an amendment could be applied to improve and manage the physicochemical properties of the golf course soils in an environment-friendly way. In this study, quartz porphyry, which has been shown to be a good soil amendment for crop production, was tested for its effect on physicochemical properties of the golf course soil, growth of creeping bentgrass (Agrostis stolonifera) and changes of soil microbial communities in the soil. In general, amendment of 20% quartz porphyry into the soil turned out to be most effective in enhancing a proper growth of the grass leaves and roots. DGGE profile data showed that eubacterial species richness was also the highest at this level of the mineral treatment in which Actinobacteria and ${\alpha}$-Proteobacteria were the dominant phyla. This appeared to be attributed to a low level of soluble organic matter content and decreased concentration of cations such as $Ca^{2+}$, $Mg^{2+}$, and $K^+$.

Condition of ex situ Bioremediation of Polycyclic Aromatic Hydrocarbons in Marine Sediments (해양퇴적토내 다환방향족탄화수소 생분해 증진 조건 연구)

  • Jung, Hong-Bae;Yun, Tian;Lee, Hee-Soon;Kwon, Kae-Kyoung;Kim, Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.179-185
    • /
    • 2005
  • Polycyclic aromatic hydrocarbons (PAHs) are a kind of toxic environmental pollutants and has been accumulated usually in marine sediments. Due to their potential hazardous to human, removal of PAHs from environments has been great concern. In the present study, the effect of microbial inoculation and the supplementation of mixed form cyclodextrin (M-CD) was assessed in the pre-sterilized or nonsterilized microcosms for optimizing operational conditions for ex situ bioremediation of sediments contaminated by PAHs. Activity of electron transport system (ETSA) was increased by the addition of M-CD regardless of inoculation of microorganisms in microcosms without sterilization. The degradation rate of PAHs in sterilized microcosms was app. 9-20% by the inoculation of single strain and 24-37% by the inoculation of microbial consortium supplemented with 1% M-CD, respectively. The degradation was not observed in microcosms without sterilization under the same conditions. The proportion of inoculated microorganisms also decreased in nonsterilized microcosms. Signals of inoculated bacteria were decreased to detection limit after 2 days in the microcosms without M-CD. In conclusion, microbial inoculation with appropriate carbon sources and removal of natural flora and grazers are required for the efficient ex situ bioremediation of sediments contaminated by PAHs in bioslurry reactor.

  • PDF

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

Study on the Correlation between the Growth Characteristics of Wild-simulated Ginseng (Panax ginseng C.A. Meyer) and Soil Bacterial Community of Cultivation Area (산양삼 생육특성과 재배지 토양세균군집 간의 상관관계 연구)

  • Kim, Kiyoon;Um, Yurry;Jeong, Dae Hui;Kim, Hyun-Jun;Kim, Mahn Jo;Jeon, Kwon Seok
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.84-84
    • /
    • 2019
  • 본 연구는 전국 임의의 산양삼 재배지를 선정하여 재배지 내의 토양 특성 및 토양세균군집을 분석하고, 토양 특성, 세균군집 및 산양삼 생육특성 간의 상관관계를 구명하기 위하여 수행되었다. 토양 이화학성 분석은 농촌진흥청의 종합분석실 매뉴얼에 따라 분석하였고, 토양세균군집 분석은 pyrosequencing analysis (Illumina platform)를 이용하였다. 토양세균군집과 생육특성 간의 상관관계는 Spearman's rank correlation을 이용하여 분석하였다. 전국 8개 산양삼 재배지로부터 분리한 토양세균군집은 2개의 cluster로 군집화를 이루는 것을 확인하였다. 모든 토양 샘플에서 Proteobacteria와 Alphaproteobacteria가 각각 평균 상대적 빈도수가 35.4%, 24.4%로 우점종으로 나타났다. 나타났다. 두 개의 cluster 간 토양세균군집의 상대적 빈도수를 비교 분석한 결과, 먼저 Proteobacteria (p = 0.03), Actinobacteria (p = 0.02), Ahlpaproteobacteria (p = 0.029), Betaproteobacteria (p = 0.021)는 cluster 1에서 cluster 2에 비해 상대적 빈도수가 유의적으로 높았고, Fimicutes (p = 0.004), Cyanobacteria (p = 0.004), Acidobacteriia (p = 0.041), Ktedonobacteria (p = 0.019), Gammaproteobacteria (p = 0.034), Bacilli (p = 0.009)은 cluster 2에서 유의적으로 상대적 빈도수가 높은 것으로 나타났다. 토양세균군집 cluster 간 산양삼의 생육특성을 비교 분석한 결과, cluster 2 재배지에서 수집한 산양삼 시료의 지하부 생중량은 cluster 1 재배지에서 수집한 산양삼 시료에 비해 cluster 2에서 유의적 (p = 0.04)으로 높았다. 산양삼 생육특성과 토양세균군집 간의 상관관계를 분석한 결과, 산양삼의 생육은 토양 pH가 낮고 Acidobacteria의 상대적 빈도수가 높은 토양에서 증가하였으며, Acidobacteriia와 Koribacteraceae의 상대적 빈도수는 산양삼의 생육과 유의적인 정의 상관관계를 보이는 것으로 나타났다. 본 연구 결과는 토양미생물군집과 산양삼 생육 간의 상관관계를 구명하는 중요한 자료가 될 것으로 생각되고, 나아가 산양삼 재배적지를 선정하는데 있어 보다 명확한 정보를 제공할 수 있을 것으로 사료된다.

  • PDF

Some Properties and Microbial Community Changes of Gul (Oyster) Jeotgal during Fermentation

  • Kim, Jeong A;Yao, Zhuang;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.343-349
    • /
    • 2019
  • Gul jeotgals (GJs) were prepared using solar salt aged for 3 years. One sample was fermented using starters, such as Bacillus subtilis JS2 and Tetragenococcus halophilus BS2-36 (each $10^6CFU/g$), and another sample was fermented without starters for 49 days at $10^{\circ}C$. Initial counts of bacilli and lactic acid bacteria (LAB) in non-starter GJ were found to be $3.20{\times}10^2$ and $7.67{\times}10^1CFU/g$ on day 0, and increased to $1.37{\times}10^3$ and $1.64{\times}10^6CFU/g$ on day 49. Those of starter GJ were found to be $2.10{\times}10^5$ and $3.30{\times}10^7CFU/g$ on day 49, indicating the growth of starters. The pH values of GJ were $5.93{\pm}0.01$ (non-starter) and $5.92{\pm}0.01$ (starter) on day 0 and decreased to $5.78{\pm}0.01$ (non-starter) and $5.75{\pm}0.01$ (starter) on day 49. Amino-type nitrogen (ANN) production increased continuously during fermentation, and $407.19{\pm}15.85$ (non-starter) and $398.04{\pm}13.73$ (starter) mg% on day 49. Clone libraries of 16S rRNA genes were constructed from total DNA extracted from non-starter GJ on days 7, 21, and 42. Nucleotide sequences of Escherichia coli transformants harboring recombinant pGEM-T easy plasmid containing 16S rRNA gene inserts from different bacterial species were analyzed using BLAST. Uncultured bacterium was the most dominant group and Gram - bacteria such as Acidovorax sp., Afipia sp., and Variovorax sp. were the second dominant group. Bacillus amyloliquefaciens (day 7), Bacillus velezensis (day 21 and 42), and Bacillus subtilis (day 42) were observed, but no lactic acid bacteria were detected. Acidovorax and Variovorax species might play some role in GJ fermentation. Further studies on these bacteria are necessary.

Comparison of Bacterial Removal Effectiveness by Different Hand Washing Methods (손세정 방법에 따른 세균 제거 효과 비교에 대한 융복합 연구)

  • Chong, Moo-Sang;Lee, Jang-Jin;Kim, Jiro
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.69-74
    • /
    • 2019
  • The purpose of this study is to compare the efficiency of bacteria removal of three different types of hand washing methods. This study performed a convenient sampling of 30 volunteers in cross-over design. The study divided the 30 volunteers into three random groups. The three groups were asked to use antiseptic soap, alcohol-based hand disinfectant, and disposable wet wipes respectively. The result of the study showed that mean log reduction values after each had washing method were $-0.45({\pm}0.69)$ with antiseptic soap and water, $-1.19({\pm}0.52)$ with alcohol-based hand disinfectant and $-0.75({\pm}0.58)$ with disposable wet wipes. The difference was statistically significant when using alcohol-based hand disinfectant compared to the other two methods (p=0.000). According to this study, alcohol-based hand disinfectant was the most effective product based on bacteria removal for hand washing. Advantages of using alcohol-based hand disinfectant are that it is cost-effective and easy to buy, also eco-friendly. Therefore, to prevent infectious disease, providing alcohol-based hand disinfectant to every corner of the community will be very helpful.

Comparative Microbiome Analysis of and Microbial Biomarker Discovery in Two Different Fermented Soy Products, Doenjang and Ganjang, Using Next-generation Sequencing (차세대 염기서열 분석법을 이용한 된장과 간장의 미생물 분포 및 바이오마커 분석)

  • Ha, Gwangsu;Jeong, Ho Jin;Noh, Yunjeong;Kim, JinWon;Jeong, Su-Ji;Jeong, Do-Youn;Yan, Hee-Jong
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.803-811
    • /
    • 2022
  • Despite the importance of traditional Korean fermented foods, little is known about the microbial communities and diversity of fermented soy products. To gain insight into the unexplored microbial communities of both Doenjang (DJ) and Ganjang (GJ) that may contribute to the fermentation in Korean traditional foods, we carried out next-generation sequencing (NGS) based on the V3-V4 region of 16S rDNA gene analysis. The alpha diversity analysis results revealed that both the Shannon and Simpson diversity indices were significantly different between the two groups, whereas the richness indices, including ACE, CHAO, and Jackknife, were not significant. Firmicutes were the most dominant phylum in both groups, but several taxa were found to be more abundant in DJ than in GJ. The proportions of Bacillus, Kroppenstedtia, Clostridium, and Pseudomonas and most halophiles and halotolerant bacteria, such as Tetragenococcus, Chromohalobacter, Lentibacillus, and Psychrobacter, were lower in DJ than in GJ. Linear discriminant effect size (LEfSe) analysis was carried out to discover discriminative functional biomarkers. Biomarker discovery results showed that Bacillus and Tetragenococcus were identified as the most important features for the classification of subjects to DJ and GJ. Paired-permutational multivariate analysis of variance (PERMANOVA) further revealed that the bacterial community structure between the two groups was statistically different (p=0.001).

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing

  • Hyeri Kim;Eun Sol Kim;Jin Ho Cho;Minho Song;Jae Hyoung Cho;Sheena Kim;Gi Beom Keum;Jinok Kwak;Hyunok Doo;Sriniwas Pandey;Seung-Hwan Park;Ju Huck Lee;Hyunjung Jung;Tai Young Hur;Jae-Kyung Kim;Kwang Kyo Oh;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.51-60
    • /
    • 2023
  • The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.

Efficacy of Sodium Hypochlorite against E. coli on Various Leafy Green and Stem Vegetables (차아염소산나트륨이 비가열 엽경채류 중 병원성 대장균 사멸에 미치는 영향)

  • Su-jin Kim;Woo-Suk Bang
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2023
  • This study was conducted to evaluate the efficacy of sodium hypochlorite in eliminating Escherichia coli strains from leafy green and stem vegetables, which are frequently sold at community service centers. A cocktail of non-pathogenic E. coli and enterohaemorrhagic E. coli (E. coli O157:H7) was used to artificially contaminate the vegetables (initial numbers of bacteria 7-8 log CFU/g). The contaminated vegetables were soaked in sodium hypochlorite for 5 min and then washed three times with running water. After the treatment, number of viable bacterial cells on the vegetables was estimated. Sodium hypochlorite treatment reduced the E. coli population by 1-2 log CFU/g on leafy green and stem vegetables, a significant reduction from the initial number. Further, sodium hypochlorite showed better antimicrobial efficacy for leaves with a larger surface area, less roughness, and softness. There was no significant difference in the antimicrobial effect between 100 and 200 mg/kg of sodium hypochlorite. Therefore, it is not necessary to increase sodium hypochlorite concentration than the level suggested in the school meal hygiene management guidelines. However, sodium hypochlorite treatment is not sufficient to achieve a safe level of microorganisms on leafy green and stem vegetables since they generally have a high abundance of microorganisms on their surface. Thus, an alternative cooking method for fresh leafy green and stem vegetables in summer should be developed to ensure they are safe for consumption.