• Title/Summary/Keyword: Bacterial canker

Search Result 72, Processing Time 0.023 seconds

Occurrences of Major Diseases and Pests on 'Goldone', 'Redvita', 'Garmrok', New Cultivars of Kiwifruit (참다래 신품종 '골드원', '레드비타', '감록'의 주요 병해충 발생)

  • Kim, Min-Jung;Chae, Dae-han;Kwon, Youngho;Kwack, Yong-Bum;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.123-131
    • /
    • 2018
  • Kiwifruit has been cultivated in southern coastal regions of Korea since late 1970s. New cultivars have been successively released in recent years. In this study, we investigated major disease and pest incidences in new kiwifruit cultivars 'Goldone', 'Redvita' and 'Garmrok' at open field in Sacheon for 3 years and rain-proof field in Jeju for 2 years. For the bacterial canker, the 3 new cultivars showed more disease occurrence in Sacheon but rare in Jeju. For leaf spot disease, compared to disease incidence of 20% on 'Hayward' in Sacheon, cv. 'Garmrok' had high incidence about 60% but cv. 'Goldone' and cv. 'Redvita' had low incidence less than 20%. However, in Jeju, diseases incidences of all the new cultivars were lesser than 20%. In the case of Hemiptera, many Halyomorpha halys and Nezara antennata appeared in Sacheon but in Jeju Plautia stali was dominated. Isolated bacterial canker pathogen was identified as Pseudomonas syringae pv. actinidiae biovar 3. Leaf spots pathogens were Phomopsis sp., Phoma sp., Fusarium tricinctum and Alternaria alternata. This study shows the disease information on new kiwifruit cultivars and the adequate disease managements will be required.

Distribution of Subgroups in Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea (국내에서 분리된 Pseudomonas syringae pv. actinidiae biovar 3 균주들의 subgroup 분포)

  • Lee, Young Sun;Kim, Gyoung Hee;Jung, Jae Sung
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2021
  • Pseudomonas syringae pv. actinidiae, which causes bacterial canker in kiwifruit, is divided into five biovars (1, 2, 3, 5, 6) on the basis of genetic characteristics and toxin productivity. Among them, biovar 3 is responsible for the current global outbreak, and has been isolated in Korea since 2011. Biovar 3 strains isolated from Korea are subdivided into six genetically different lineages (subgroup I, IV, V, VI, VII, and VIII) based on random amplified polymorphic DNA (RAPD) analysis. In this work, the subgroup-specific sequence characterized amplified region (SCAR) primers were developed from sequenced differential RAPD bands. Distribution of the subgroups of the biovar 3 strains collected in Korea from 2011-2017 were examined using these subgroup-specific primer sets. Among the 54 strains tested, 35 strains (64.8%) belonged to subgroup V, 9 strains (16.7%) belonged to subgroup IV, 4 strains (7.4%) belonged to subgroup VI, 3 strains (5.6%) belonged to subgroup VII, 2 strains (3.7%) belonged to subgroup VIII, and 1 (1.9%) strain belonged to subgroup I. Strains belonging to subgroups IV, V, and VI were shown to be related to strains isolated from China, New Zealand, and Chile, respectively. The study revealed that the biovar 3 strains in Korea are genetically diverse and are estimated to have been introduced through pollen sourced from foreign countries.

Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea (국내에서 분리된 Streptomycin 저항성 Pseudomonas syringae pv. actinidiae Biovar 3 균주에서 rpsL 유전자의 돌연변이)

  • Lee, Young Sun;Kim, Gyoung Hee;Koh, Young Jin;Jung, Jae Sung
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.26-31
    • /
    • 2022
  • Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.

Molecular Characteristics of Pseudomonas syringae pv. actinidiae Strains Isolated in Korea and a Multiplex PCR Assay for Haplotype Differentiation

  • Koh, Hyun Seok;Kim, Gyoung Hee;Lee, Young Sun;Koh, Young Jin;Jung, Jae Sung
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.96-101
    • /
    • 2014
  • The molecular features of Pseudomonas syringae pv. actinidiae strains isolated in Korea were compared with strains isolated in Japan and Italy. Sequencing of eight P. syringae pv. actinidiae and three P. syringae pv. theae strains revealed a total of 44 single nucleotide polymorphisms across 4,818 bp of the concatenated alignment of nine genes. A multiplex PCR assay was developed for the detection of P. syringae pv. actinidiae and for the specific detection of recent haplotype strains other than strains isolated since the 1980s in Korea. The primer pair, designated as TacF and TacR, specifically amplified a 545-bp fragment with the genomic DNA of new haplotype of P. syringae pv. actinidiae strains. A multiplex PCR conducted with the TacF/TacR primer pair and the universal primer pair for all P. syringae pv. actinidiae strains can be simultaneously applied for the detection of P. syringae pv. actinidiae and for the differentiation of new haplotype strains.

Incidence Rates of Major Diseases of Kiwiberry in 2015 and 2016

  • Kim, Gyoung Hee;Kim, Deok Ryong;Park, Sook-Young;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.434-439
    • /
    • 2017
  • Incidence rates of diseases in kiwiberry orchards were investigated monthly from late June to late September in Gwangyang and Boseong in 2015 and 2016. The impact of postharvest fruit rot was investigated during ripening after harvest. Bacterial canker was only observed on one single tree in 2015, but black rot, powdery mildew, leaf spot and blight, and postharvest fruit rot diseases were problematic throughout the study period in both 2015 and 2016. Incidence rates of the diseases varied with kiwiberry cultivar, region and sampling time. Incidence rates of powdery mildew, leaf spot and blight diseases increased significantly during the late growing stages near fruit harvest, while black rot peaked in late August. Incidence rate of postharvest fruit rot on fruit without fruit stalks was less than half of fruit with fruit stalks, regardless of kiwiberry cultivars. Among the four cultivars, Mansu was relatively resistant to black rot and postharvest fruit rot diseases. In our knowledge, this is the first report of various potential pathogens of kiwiberry in Korea.

The draft genome sequence of Pectobacterium carotovorum subsp. actinidiae KKH3 that infects kiwi plant and potential bioconversion applications (키위 나무에서 분리한 Pectobacterium carotovorum subsp. actinidiae KKH3 균주의 유전체 분석 및 이를 통한 생물전환 소재로서의 가능성 연구)

  • Lee, Dong Hwan;Lim, Jeong-A;Koh, Young-Jin;Heu, Sunggi;Roh, Eunjung
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.323-325
    • /
    • 2017
  • Pectobacterium carotovorum subsp. actinidiae KKH3 is an Enterobacteriaceae bacterial pathogen that infects kiwi plants, causing canker-like symptoms that pose a threat to the kiwifruit industry. Because the strain was originally isolated from woody plants and possesses numerous plant cell wall-degrading enzymes, this draft genome report provides insight into possible bioconversion applications, as well as a better understanding of this important plant pathogen.

Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment

  • Jihye Jung;Dawon Jo;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.538-546
    • /
    • 2024
  • Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, in-depth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 ㎍/ml, 125 ㎍/ml, and 125 ㎍/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 ㎍/ml, 250 ㎍/ml, and 500 ㎍/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 ㎍/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.

Genetic Diversity Among Pseudomonas syringae pv. morsprunorum Isolates from Prunus mume in Korea and Japan by Comparative Sequence Analysis of 16S rRNA Gene

  • Lee, Young-Sun;Koh, Hyun-Seok;Sohn, San-Ho;Koh, Young-Jin;Jung, Jae-Sung
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.295-298
    • /
    • 2012
  • Genetic diversity among Pseudomonas syringae pv. morsprunorum isolates from Prunus mume in Korea and Japan was investigated by comparative sequence analysis of the 16S rRNA gene. The strains included 24 field isolates recovered from P. mume in Korea along with seven Japanese strains. Two strains isolated from P. salicina in Japan, one strain from P. avium in the United Kingdom, and the pathotype strain were also used for comparison with their 16S rRNA gene sequences. Nearly complete 16S rRNA gene sequences were sequenced in all 35 strains, and three sequence types, designated types I, II and III, were identified. Eleven strains consisting of five Korean isolates, five Japanese strains, and one strain from the United Kingdom belonged to type I, whereas the pathotype strain and another 19 Korean isolates belonged to type III. Another four Japanese strains belonged to type II. Type I showed 98.9% sequence homology with type III. Type I and II had only two heterogeneous bases. The 16S rRNA sequence types were correlated with the races of P. syringae pv. morsprunorum. Type I and II strains belonged to race 1, whereas type III isolates were included in race 2. Sequence analyses of the 16S rRNA gene from P. syringae pv. morsprunorum were useful in identifying the races and can further be used for epidemiological surveillance of this pathogen.

Transcriptional Changes of Plant Defense-Related Genes in Response to Clavibacter Infection in Pepper and Tomato

  • Hwang, In Sun;Oh, Eom-Ji;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.450-458
    • /
    • 2020
  • Pepper and tomato plants infected with two Clavibacter species, C. capsici and C. michiganensis have shown different patterns of disease development depending on their virulence. Here, we investigated how pepper and tomato plants respond to infection by the high-virulent or low-virulent Clavibacter strains. For this, we chose two strains of each Clavibacter species to show different virulence level in the host plants. Although low-virulent strains showed less disease symptoms, they grew almost the same level as the high-virulent strains in both plants. To further examine the response of host plants to Clavibacter infection, we analyzed the expression patterns of plant defense-related genes in the leaves inoculated with different strains of C. capsici and C. michiganensis. Pepper plants infected with high-virulent C. capsici strain highly induced the expression of CaPR1, CaDEF, CaPR4b, CaPR10, and CaLOX1 at 5 days after inoculation (dai), but their expression was much less in low-virulent Clavibacter infection. Expression of CaSAR8.2 was induced at 2 dai, regardless of virulence level. Expression of GluA, Pin2, and PR2 in tomato plants infected with high-virulent C. michiganensis were much higher at 5 dai, compared with mock or low-virulent strain. Expression of PR1a, Osmotin-like, Chitinase, and Chitinase class 2 was increased, regardless of virulence level. Expression of LoxA gene was not affected by Clavibacter inoculation. These results suggested that Clavibacter infection promotes induction of certain defense-related genes in host plants and that differential expression of those genes by low-virulent Clavibacter infection might be affected by their endophytic lifestyle in plants.

Cultural Characteristics of Xanthomonas axonopodis pv. citri Bacteriophages CP1from Korea

  • Myung, Inn-Shik;Nam, Ki-Woong;Cho, Yong-Sub
    • The Plant Pathology Journal
    • /
    • v.18 no.6
    • /
    • pp.333-337
    • /
    • 2002
  • Bacteriophage of Xanthomonas axonopodis pv. citri, a causal agent of citrus canker disease, was studied for its cultural characteristics. The relative efficiency of plat-ing (EOP) of 11 phages used to 13 strains off, axonopodis pv. citri tested ranged from 0.8 to 1, indicating that the phages are homogeneous. Homogeneity of the phages suggests that citrusphage belongs to a single group CPK as reported in a previous study. Typical one-step growth of a phage P5 selected from the citrusphages was observed. The EOP of the P5 was dependent upon the media, pH, and temperature. It was observed that multiplication of the phage cultured in Wakimotos potato semisynthetic media at $25^{\circ}C$ was more effective than that in other temperatures, regardless of the bacterial strains and media used. It was observed that pH 6.5 is optimal for multiplication of the phage. In comparison of the EOP among citrusphages $CP_1$, $CP_2$, and P5, multiplicative characteristic of phage P5 in the bacteria on time-course was similar with that of phage $CP_1$. Thus, it was concluded that citrusphage group CPK from Korea is $CP_1$ based on host specificity of the phage as described in a previous study, homogeneity, and its multiplication pattern.