• Title/Summary/Keyword: Bacterial Causes

Search Result 278, Processing Time 0.034 seconds

Causes of acute gastroenteritis in Korean children between 2004 and 2019

  • Ryoo, Eell
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.6
    • /
    • pp.260-268
    • /
    • 2021
  • Since the 2000s, the major causes of acute gastroenteritis in children in Korea have been identified by classifying the pathogens into viruses, bacteria, and protozoa. For viruses, the detection rate is 20%-30%, and norovirus is being increasingly detected to account for the majority of viral gastroenteritis cases. In addition, despite the dissemination of the rotavirus vaccine, many rotavirus infections persist, and its seasonal distribution is changing. The detection rate of bacterial pathogens is 3%-20%, with Escherichia coli and Salmonella spp. infections being the most common, while the incidences of Bacillus cereus and Campylobacter spp. infections are gradually increasing. Owing to intermittent outbreaks of gastroenteritis caused by individual bacteria as well as the inflow of causative bacteria, such as E. coli, Vibrio spp., and Campylobacter spp., from overseas, continuous surveillance of and research into the characteristics and serotypes of each bacterium are needed.

The Bacterial Contamination in Glasses for Vision Correction (시력 교정용 안경의 세균 오염)

  • Kim, Heung-Soo;Hwang, Seock-Yeon;Yun, Chi-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2013
  • Purpose: Recently, bacterial contamination of equipment and accessories required for vision correction has become a main causal factor in ophthalmic diseases. Thus, We investigated on both the actual condition of bacterial contamination from glasses of vision correction. Methods: Investigation of microorganisms was carried out with a group of 145 glasses wearers, composed of 36 elementary school students, 37 middle school students, 38 high school students, 10 college students, and 32 aged men. Results: Seventeen species of bacteria are detected from glasses of vision correction: B. cereus, B. licheniformis, Bacillus sp., CNS, Enterococcus sp., Escherichia coli, Proteus sp., Pseudomonas sp., Serretia sp., Streptococcus sp., Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus hemolyticus,, Acinetobacter sp., Enterobacter cloacae, GNR, and Pseudomonas aeruginosa. Among 17 species of bacteria, there are some potential causative agents for keratitis, corneal ulcer, Acute dacryocystitis, Orbital cellulitis, Periphlebitis retinae, Marginal blepharitis, and Acute conjunctivitis. Enterobacter cloacae, Pseudomonas aeruginosa and Staphylococcus epidermidis cause keratitis. Pseudomonas sp., and Staphylococcus aureus cause corneal ulcer. Staphylococcus aureus causes acute dacryocystitis, orbital cellulitis, periphlebitis retinae, marginal belpharitis. Streptococcus hemolyticus causes acute conjunctivitis. Conclusions: In summation, it is verified that hazardous, opportunistic and infectious microorganisms exist in glasses for vision correction. Ophthalmic diseases are predicted. Therefore, supplementary research on the development of a cleaning solution to cleanse the infection and of an effective method to remove microorganisms is required.

Multiple Antibiotic Resistance in Pseudomonas putida Associated with Overproduction of a Membrane Protein

  • JUNG NAM KIM;HO GUN RHIE
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2001.05a
    • /
    • pp.140-140
    • /
    • 2001
  • Porins are major outer membrane proteins which produce non-specific aqueous channels across the membrane that permit the diffusion into the bacterial cells of hydrophilic compounds including sugars, amino acids, and antibiotics. In some gram-negative organisms, antibiotic resistance can be induced by mutational loss of channel that causes a decrease in outer membrane permeability. (omitted)

  • PDF

Tolaasin Forms Various Types of Ion Channels in Lipid Bilayer

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.34-34
    • /
    • 1998
  • Tolaasin is a channel forming bacterial toxin produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated oyster mushrooms. When tolaasin molecules form channels in the membranes of mushroom cells, they destroy cellular membrane structure, known as 'colloid osmotic lysis'. In order to understand the molecular mechanisms forming membrane channels by tolaasin molecules, we have investigated the electrophysiological characteristics of tolaasin-induced channels in lipid bilayer.(omitted)

  • PDF

Pseudomembranous Colitis in a Child of Chronic Diarrhea (만성 설사 환아에서의 위막성 대장염 1례)

  • Lee, Jin;Kim, Jong-Wan;Kim, Seung-Il
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.1 no.1
    • /
    • pp.138-143
    • /
    • 1998
  • Chronic diarrhea in children is a common problem with numerous causes. Although most of these causes are benign, critical illness may present as chronic diarrhea. In a patient of chronic diarrhea, gastrointestinal infections are the most common causes in children of all ages and antibiotics may cause chronic diarrhea by altering intestinal microflora, which can result in the emergence of bacterial overgrowth. Overgrowth of Clostridium difficile may cause pseudomembranous colitis. We experienced 25-month-old boy who suffered from chronic diarrhea and partially treated with antibiotics irregularly. Colonoscopic findings of this child showed multiple plaques with white to yellowish exudate which adhere to the mucosal surface of a variable length of rectum. Histollogically, each plaque comprised a pseudomembrane of mucous debris, inflammatory cells, and exudate overlying groups of partially disrupted glands. A latex agglutination test on patient's stool was positive to toxin A of Clostridium difficile. He was recovered after stopping the antibiotics he has been prescribed, and being given vancomycin for 2 weeks. We report this case with brief review of literature.

  • PDF

The Rare Causes of Rhabdomyolysis; Parainfluenza Virus type I Infection and Hypernatremia (드문 원인에 의한 횡문근융해증; 제 1형 파라인플루엔자 감염과 고나트륨혈증 각 1례)

  • Park, Sook-Hyun;Hwang, Young-Ju;Cho, Min-Hyun;Ko, Cheol-Woo
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • Rhabdomyolysis, the clinical syndrome caused by the injury to skeletal muscle resulting in the release of muscle cell contents into the systemic circulation, has been described in association with various factors. The causes include crush injury, skeletal muscle overuse, heat, drug, abuse of alcohols and metabolic disorders as well as several types of viral and bacterial infections. We report two cases of rhabdomyolysis, which were complicated by uncommon causes, parainfluenza virus type I infection and hypernatremia.

Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.391-397
    • /
    • 2014
  • Acid mine drainage occurrence is a serious environmental problem by mining industry; it usually contain high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of greatest concern. It causes mine impacted soil pollution with mining and smelting activities, fossil fuel combustion, and waste disposal. In the present study, three bacterial strains capable of producing urease were isolated by selective enrichment of heavy metal contaminated soils from a minei-mpacted area. All isolated bacterial strains were identified Sporosarcina pasteurii with more than 98% of similarity, therefore they were named Sporosarcina sp. KM-01, KM-07, and KM-12. The heavy metals detected from the collected mine soils containing bacterial isolates as Mn ($170.50mg\;kg^{-1}$), As ($114.05mg\;kg^{-1}$), Zn ($92.07mg\;kg^{-1}$), Cu ($62.44mg\;kg^{-1}$), and Pb ($40.29mg\;kg^{-1}$). The KM-01, KM-07, and KM-12 strains were shown to be able to precipitate calcium carbonate using urea as a energy source that was amended with calcium chloride. SEM-EDS analyses showed that calcium carbonate was successfully produced and increased with time. To confirm the calcium carbonate precipitation ability, urease activity and precipitate weight were also measured and compared. These results demonstrate that all isolated bacterial strains could potentially be used in the bioremediation of acidic soil contaminated by heavy metals by mining activity.

Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

  • Yu, Ji-Gang;Lim, Jeong-A;Song, Yu-Rim;Heu, Sunggi;Kim, Gyoung Hee;Koh, Young Jin;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50℃, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice

  • Choi, Yeounju;Kim, Namgyu;Mannaa, Mohamed;Kim, Hongsup;Park, Jungwook;Jung, Hyejung;Han, Gil;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • Type VI secretion system (T6SS) is a contact-dependent secretion system, employed by most gram-negative bacteria for translocating effector proteins to target cells. The present study was conducted to investigate T6SS in Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice, and to unveil its functions. Two T6SS clusters were found in the genome of Xoo PXO99A. The deletion mutants, Δhcp1, Δhcp2, and Δhcp12, targeting the hcp gene in each cluster, and a double-deletion mutant targeting both genes were constructed and tested for growth rate, pathogenicity to rice, and inter-bacterial competition ability. The results indicated that hcp in T6SS-2, but not T6SS-1, was involved in bacterial virulence to rice plants. However, neither T6SS-1 nor T6SS-2 had any effect on the ability to compete with Escherichia coli or other bacterial cells. In conclusion, T6SS gene clusters in Xoo have been characterized, and its role in virulence to rice was confirmed.