• Title/Summary/Keyword: Backward walking

Search Result 67, Processing Time 0.024 seconds

The Gaiting Behaviour of the Grass Crab, Hemigrapsus penicillatus on the Nettings (망지에 대한 풀게(Heyhigrapsus penirillatus)의 보행운동)

  • KIM Yong-Hae;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.177-184
    • /
    • 1987
  • The quantitative mechanics on the sideways walking of the crabs may provide a basic solution for entanglements of the walking legs in gillnets. The gaiting behaviour of the crabs on the flat board and the nettings 10, 16 and 23 mm in mesh size were experimented concerning about stepping positions and times in the laboratory using video set on July, 1984, It was found that the irregular movements of walking crabs in stepping positions and patterns were appeared on the nettings due to the absence of mechanical contact in spite of neural control of compensating, while on the flat surface evolved systematic leg movements. The mean stride length and walking velocity, which were increased with the carapace width on the flat board, as well as the step period and forward by backward stroke time were greater than those values on the netting, not associated with the carapace or the mesh size. Also, the step period and the Phase difference on the nettings revealed larger fluctuation than on the flat board. The joint angles of the walking legs, on the nettings in meropodite-carporodite and thorax-meropodite, which joint was varied especially up to below horizon because of the falling legs through the netting twine, were virtually wider than those on the flat substrate.

  • PDF

Effect of Visual Feedback Training of Core Strength on Coordination, Balance and Walking Ability of Stroke Patients (코어강화를 동반한 시각적 되먹임 훈련이 뇌졸중 환자의 협응력, 균형과 보행능력에 미치는 영향)

  • Yoon, Sam-Won;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • PURPOSE: This study compares the effects of HUBER rehabilitation and general rehabilitation treatment on the coordination, balance, and walking ability of stroke patients. METHODS: This study enrolled 38 randomized stroke patients, and data was collected for 6 weeks. All participants were randomly assigned to either the experimental group (n = 19) or control group (n = 19). The experimental group were administered Huber rehabilitation and general rehabilitation treatment. The control group was given only general rehabilitation treatment. Both treatments were conducted for 30 minutes during each training session, 3 training sessions per week, for 6 weeks. The coordination, balance, and walking ability were evaluated before and after the intervention, to compare the intergroup and intragroup changes. RESULTS: Change in the right LOS (limit of stability) (p < .001) and forward LOS (p < .02) following intervention were significantly greater in the experimental group than in the control group, but no significant group difference was observed between left LOS (p > .1) and backward LOS (p > .2). Alterations in coordination (p < .02) and TUG (p <. 05) were significantly greater after intervention in the experimental group than in the control group. CONCLUSION: These findings suggest that HUBER rehabilitation is effective in improving the coordination, balance, and walking ability in stroke patients. To strengthen and validate the results of this study, future studies related to HUBER rehabilitation are required.

Immediate Effects of the Downhill Treadmill Walking Exercise on Thoracic Angle and Thoracic Extensor Muscle Activity in Subjects With Thoracic Kyphosis (내리막 경사로 트레드밀 걷기 훈련이 흉추 뒤굽음증의 흉추각도와 흉추기립근 활성도에 미치는 영향)

  • Lee, Jun-hyeok;Jeon, Hye-seon;Kim, Ji-hyun;Park, Joo-hee;Yoon, Hyeo-bin
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Background: In previous studies, changes in postural alignment were found when the slope was changed during walking. Downhill walking straightens the trunk by shifting the line of gravity backward. Objects: This study investigated the effect of the downhill treadmill walking exercise (DTWE) on thoracic angle and thoracic erector spinae (TES) activation in subjects with thoracic kyphosis. Methods: A total of 20 subjects with thoracic kyphosis were recruited for this study. All the subjects performed the DTWE for 30 minutes. A surface EMG and 3D motion capture system were used to measure TES activation and thoracic angle before and after the DTWE. Paired t-tests were used to confirm the effect of the DTWE (p<.05). Results: Both the thoracic angle and TES activation had significantly increased after the DTWE compared to the baseline (p<.05). An increase in the thoracic angle indicates a decrease in kyphosis. Conclusion: The DTWE is effective for thoracic kyphosis patients as it decreases their kyphotic posture and increases the TES activation. Future longitudinal studies are required to investigate the long-term effects of the DTWE.

Changes of Balance Ability according to the Stability of Shoes in Elderly Woman and Female University Student (신발의 안정성에 따른 여성노인과 여대생의 균형능력 변화)

  • Song, Yu-jin;Min, Gyeong-hun;Jeong, Deok-yong;Yook, Seon-young;Choi, Yun-young;Bae, Kyung-yoon;Cho, Ki Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.3
    • /
    • pp.70-75
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the changes of static and dynamic balance control ability according to the stability of shoes in elderly woman and female university student. Design: Cross-sectional study. Methods: Six elderly women and seven female university students were recruited for this study. The subject's static and dynamic balance were evaluated while wearing two different types of shoes (comfortable running shoe and masai walking shoe). The BT4 system was used to measure the static (postural sway area and velocity) and dynamic balance (limit of stability on forward, backward and left and right side). The measurement of static and dynamic balance control ability was performed in standing posture wearing comfortable running shoes and masai walking shoes. Results: In the static balance control ability, both female university students and elderly women showed significant increase in postural sway area and velocity when wearing unstable shoes (p<0.05) In addition, in the dynamic balance control ability, both female university students and elderly women showed significant decrease in limit of stability on forward and backward when wearing unstable shoes (p<0.05). Conclusion: In selecting shoes for the elderly, the stability of shoe should be considered for prevention of falls.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

Animation Support for Networked Virtual Environments

  • Ko, Hyeongseok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.13-17
    • /
    • 1996
  • This paper presents animation techniques and issues involved in virtual environments where the participants interact with each other through a network. The state of the participant should be recognized at each local site, and broadcast to the other sites. Because information exchange is minimal, animation techniques are applied to convert the incoming low DOF parameters into high DOF joint angles that completely determine the configuration of the agents at each frame. As a case study, a software system VRLOCO is introduced, which has been developed by the author over the last five years. From a simple stream of body center positions, VRLOCO generates realistic curved path human locomotion in real-time. Based on the heading direction and speed, the locomotion automatically switches among five different primitives: walking, running, lateral stepping, backward stepping, and turnaround. The techniques presented here proved robust and faithful: the algorithm is not sensitive to the noise in the data, and the resulting animation conforms well with the original data.

  • PDF

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

The Effects of Wearing Roller Shoes on Muscle Activity in The Lower Extremity During Walking (롤러신발과 일반신발의 착용 후 보행 시 하지근의 근전도 비교)

  • Chae, Woen-Sik;Lim, Young-Tae;Lee, Min-Hyung;Kim, Jung-Ja;Kim, Youn-Joung;Jang, Jae-Ik;Park, Woen-Kyoon;Jin, Jae-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to compare muscle activity in the lower extremity during walking wearing jogging and roller shoes. Twelve male middle school students (age: 15.0 yrs, height 173.7 cm, weight 587.7 N) who have no known musculoskeletal disorders were recruited as the subjects. Seven pairs of surface electrodes (QEMG8, Laxtha Korea, gain = 1,000, input impedance >$1012{\Omega}$, CMMR >100 dB) were attached to the right-hand side of the body to monitor the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and medial (GM) and lateral gastrocnemius (GL) while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and EMG recordings. EMG data were filtered using a 10 Hz to 350 Hz Butterworth band-passdigital filter and further normalized to the respective maximum voluntary isometric contraction EMG levels. For each trial being analyzed, five critical instants and four phases were identified from the recording. Averaged IEMG and peak IEMG were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p<.05). The VM, TA, BF, and GM activities during the initial double limb stance and the initial single limb stance reduced significantly when going from jogging shoe to roller shoe condition. The decrease in EMG levels in those muscles indicated that the subjects locked the ankle and knee joints in an awkward fashion to compensate for the imbalance. Muscle activity in the GM for the roller shoe condition was significantly greater than the corresponding value for the jogging shoe condition during the terminal double limb stance and the terminal single limb stance. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the GM activity for the roller shoe condition increased. It seems that there are differences in muscle activity between roller shoe and jogging shoe conditions. The differences in EMG pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine joint kinematics during walking with roller shoes.

Impact of Firefighters' Protective Clothing and Equipment on Upper Body Range of Motion (소방용 방화복 및 방화 장비에 따른 상반신 관절 각도의 동작 범위 연구)

  • Kim, Seonyoung;Park, Huiju
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.635-645
    • /
    • 2015
  • This study analyzed the range of motion of upper body in different configurations of firefighters' protective clothing and equipment. The purpose of this study was to understand the influence of firefighters' protective clothing and equipment over upper body motion in order to improve design of firefighters' protective clothing and equipment. 12 firefighters' upper body range of motion was analyzed while performing standing and walking trials in five different garment configurations including turnout ensemble, fire boots and the self-contained breathing apparatus. Analysis of upper body range of motion included spinal joints of L5S1, L4L3, T1C7, and C1Head. During standing trials, garment configurations caused a significant difference in range of motions at joints of L5S1, L4L3, T1C7, and C1Head. Analysis on the mean of range of motions at L5S1 and L4L3, showed that firefighters' waist bent forward significantly to a greater extent while they wore a self-contained breathing apparatus. A significantly increased range of motion was found for T1C7 and C1Head while carrying a self-contained breathing apparatus, which indicated an increase in the extension of the trunk and neck backward to stand upright and look squarely. A significant difference in range of motion was also found for L5S1 and L4L3 during walking trials.

Wearing Acceptability of Chemical Protective Clothing during Fire Training (소방훈련시 화학보호복 착용에 따른 동작만족도 연구)

  • Bang, Changhoon;Kwan, Jungsuk
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.110-115
    • /
    • 2020
  • The aim of this study was to investigate the wearing acceptability of chemical protective clothing during fires and to provide basic data for the safety of firefighters. The results of the study were as follows: Wearer acceptabilities of chemical protective clothing under static movement (e.g., looking at the ceiling with maximum head bending, wrapping one's arms around oneself, sitting obliquely on the floor, and maintaining a crouching position) were 21.7%-47.8% lower than those of general uniforms. When wearing chemical protective suits, the acceptability under static movement was statistically low (p < .001). Wearer acceptabilities of chemical protective clothing under dynamic movement (e.g., running, lifting a heavy object (20 kg) up to the waist, lifting and moving a heavy object (20 kg) by 1 m, lifting a stretcher and walking forward, and lifting a stretcher and walking backward) were 19.2%-47.8% lower than those of general uniforms. When wearing chemical protective suits, the acceptability under dynamic movement was also statistically low (p < .001).