• Title/Summary/Keyword: Backward stepping test

Search Result 3, Processing Time 0.022 seconds

The Effects of Virtual Reality-based Continuous Slow Exercise on Factors for Falls in the Elderly (가상현실에서 연속적 느린 운동이 노인의 낙상 요인에 미치는 영향)

  • Kim, Jung-Jin;Gu, Seul;Lee, Jin-Ju;Kim, Yu-Shin;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.90-97
    • /
    • 2012
  • Purpose: The purpose of this study was to assess the effects of virtual reality-based continuous slow exercise on muscle strength and dynamic balance capacity, in older adults over 65 years of age. Methods: Twenty-six volunteers were randomly divided into two groups; a Virtual Reality (VR) exercise-group ($67.8{\pm}4.1$ yrs) and a Control group ($65.5{\pm}5.2$ yrs). The VR group participated in eight weeks of virtual reality exercise, utilizing modified Tai-Chi provided by a motion capture system, and the Control group had no intervention. The hip muscle strength and dynamic balance of the members of both the VR group and the Control group were measured at pre- and post-intervention, using a multimodal dynamometer, and backward stepping test, respectively. Results: 1. After the 8-week VR-based exercise, the VR group showed significant improvement of hip strength, compared to the control group: hip extension (p=0.00), flexion (p=0.00), abduction (p=0.00), and adduction (p=0.00). 2. After the 8-week VR-based exercise, the VR group showed significant improvement of dynamic balance capacity as ground reaction force, compared to the control group. Eyes opened backward stepping test: Fx (+) (p=0.00), Fy (-) (p=0.02), Ver (+) (p=0.02) direction. Eyes closed backward stepping test: Fx (+) (p=0.04), Fy (-) (p=0.04), Ver (+) (p=0.03) direction. Conclusion: The VR group showed improvement of their hip muscle strength, and dynamic balance capacity. Therefore VR-based continuous slow exercise would contribute to reducing the risk of falls in the elderly.

Effects of Functional Electrical Stimulation (FES) on the Temporal-spatial Gait Parameters and Activities of Daily Living in Hemiplegic Stroke Patients

  • Oh, Dong-Gun;Yoo, Kyung-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.37-44
    • /
    • 2021
  • PURPOSE: This study examined the effects of functional electrical stimulation (FES) on temporal-spatial gait and the activities of daily living in hemiplegic stroke patients. METHODS: The subjects were 29 hemiplegic stroke patients (57.7 ± 10.3). The patients walked at a self-controlled speed in four states: (1) walking without FES (non-FES), (2) walking with FES on the gluteus medius in the stance phase (GM), (3) walking with FES on the common peroneal nerve and tibialis anterior in the swing phase (PT), (4) walking with both GM and PT. A GAITRite system, Timed-Functional Movements battery, and Timed UP and Go test were used to measure the variables. RESULTS: Significant improvements were observed in all variables of the GM+PT, GM, and PT states compared to the non-FES state (p < .05). There were significant improvements in the GM+PT state compared to GM and PT states (p < .05). Moreover, significant improvements were noted in the single support time on the affected side, backward walking 10ft, and side stepping 10ft on the affected side of the GM state compared to the PT state (p < .05). There were significant improvements in the stride length on the affected side and side stepping 10ft on the unaffected side of the PT state compared to the GM state (p < .05). CONCLUSION: FES is effective in improving the temporal-spatial gait and activities of daily living in hemiplegic stroke patients.

The Results of Various Vestibular Function Tests in Young Male Adult (장정에 시행한 몇가지 평가기능 검사성적에 대한 고찰)

  • 박찬일;추광철;노관택
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.2.3-2
    • /
    • 1972
  • The vestibular function test reveals the objective findings of the impairment of the vestibular labyrinth. It's purpose is based on the analysis of the findings and detect the location and etiology of the labyrinthine impairment. In the vestibular function test, the vestibulo-spinal reflex has the clinical significance upon the tonus of the striated muscles by the labyrithine stimulation and contribute to regulating the posture and the position, at rest as well as in motion. The vestibulo-spinal reflex must performe as one of the routine vestivular function test because it can be evoked in man by such weak stimuli to the labyrinth as cannot induce vestibulo-ocular reflex. Authors performed the vestibular function test such as one leg test, gait test, stepping test and vertical writing test to one hundred of healthy and young male adult and received the following results. Results 1. One leg test: In 30 seconds, the frequency of dropping the leg on the ground was between 0 to 3 times in Rt., and 0 to 5 times in Lt. The mean frequency was 0.48 times in Rt., and 0.68 times in Lt. 2. Gait test: In forward gait; the range of the deviation was distributed 0 to 100 cm and mean range was 22.5cm to the Rt., 26.1cm to the Lt. In backward gait; the range deviation was distributed 0 to 140cm and mean range was 35.4cm to the Rt., 33.0cm to the Lt. 3. Stepping test: In normal head position; forward movement war 93% and backward 5%. The angle of displacement deviated to the Rt. side in 36%, and Lt. in 50%. The angle of rotation deviated to the Rt. side in 53 %, and Lt. in 36%. The mean values: angle of displacement was 22.05 degrees, angle of rotation was 24.40 degrees, distance of displacement was 48.95cm. In backward head position; Forward movement was 94% and backward was 3%. The angle of displacement deviated in 34%, and Rt. in 55%, to the Rt. side The angle of rotation deviated to the Rt. side in 50%, and Lt. in 42%. The mean values; angle of displacement was 29.72 degrees, angle of rotation was 39.53 degrees, distance of displacement was 44.17cm. 44.17cm. 4. Vertical writing test: The angle of deviation was between 0 to 16 degrees in all cases, and was between 0 to 12 degrees in the cases of normal head position. The mean angle of deviation was between 4.15 to 5.76 degrees on each side. The direction of deviation to the Rt. side was 54~69%, Lt. was 25~40% and 3~7% was vertical without deviation.

  • PDF