• Title/Summary/Keyword: Backward isentropic trajectory

Search Result 5, Processing Time 0.019 seconds

Role of Transport on Aerosol Concentration at Crater Lake, Oregon USA (미국 오레곤주 Crater Lake의 에어로졸 농도에 미치는 수송의 역할)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.669-677
    • /
    • 2002
  • This study was conducted to investigate the characteristics of role of transport on aerosol concentration at Crate Lake, Oregon USA for 1988.3~1999. 5. The IMPROVE program is a cooperative measurement effort governed by a steering committee composed of representatives from USA federal and regional-state organizations. Also IMPROVE sampler is designed to obtain a complete signature of the composition of the airborne particles affecting visibility. According to 10-day backward isentropic trajectory analysis, the frequency of local, marine and Asian trajectory showed 33.1%(335 cases), 47%(478 cases), 5.2%(53 cases) respectively. The monthly variation of nss $SO_4^{2-}$, nss S, $NO_3^-$, K and C showed the double peak pattern, high in April~May and August~september and showed the lowest concentration in Winter. The other constituents concentration except for Cl$^{[-10]}$ , Na, Mg was high in local trajectory than marine trajectory. A ratio nss $SO_4^{2-}$ to $SO_4^{2-}$ was 90.5% in marine trajectory and 98% in local trajectory. It suggest that the aerosol in Crater Lake was effected by salt. The annual mean concentration of nss $SO_4^{2-}$ and nss S decreased but the springtime concentration increased.

Characteristics of Springtime CO and O3 according to Transport at Cheeka Peak Observatory(CPO), Northwest of USA (미국 서북부 Cheeka Peak에서의 수송에 따른 봄철 CO와 O3의 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.507-517
    • /
    • 2002
  • Cheeka Peak is a unique site for monitoring the background chemistry and aerosol contents of pristine marine air at mid-latitude. During long-range onshore winds that occur frequently throughout the year, it is predicted to have the cleanest air in the northern hemisphere. Measurements of CO and O$_3$were conducted at Cheeka Peak Observatory(CPO) on the northwestern tip of Washington state, USA during March 6 ∼May 29, 2001. The data have been segregated to quantify the mixing ratio of these species in the Pacific marine atmosphere. Also the marine air masses were further classified into four categories based on 10-day backward isentropic trajectories; high, mid, and low latitude and those which had crossed over the Asian industrial region. The diurnal variation of CO and O$_3$at CPO showed a similar to tendency of background measurement site. When marine air mass flowed to CPO, CO concentration was lower and O$_3$was similar or higher than those of total data. The westerly flow from ocean, not easterly from continent occurred the high concentration of CO and O$_3$at CPO. Using the trajectory segregation of marine air mass, the comparison of concentration according to latitude calculated. the CO concentration of Asian trajectory was lower than other latitudes, O$_3$concentration was higher.

Characteristics of suspended particulate for Yellow sand of January, 1999 in Busan (1999년 1월의 황사 발생시 부산지역의 부유분진 특성)

  • 전병일;박재림;박종길
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1081-1087
    • /
    • 2002
  • This study was performed to research the characteristics of suspended particulate for Yellow Sand of January, 1999 in Busan. Yellow Sand frequency during 13 years(1988~2000) in Busan showed maximum in April(57%), next to March(21%), May(16%). According to result of 850hPa weather map and backward isentropic trajectory, this event originated from the Gobi Desert and the Loess Plateau of China. And three mode was found in time series of TSP and PM10 concentration, primary peak showed the maximum hourly concentration at ali station. Gamjeondong as industrial site showed the highest TSP concentration and also had the longest high concentration($geq700\mu\textrm{g}/m^3$). In PM10, concentration of primary peak showed maximum value at Yeonsandong, maximum concentration of secondary and third peak was Deokcheondong. Lasted time from primary peak to secondary peak was about 30 hours, between secondary peak and third peak was 18 hours in Busan, The traveling time between occurrence of Yellow Sand the finding of it was 8~9 hours in Busan and 4~5 hours in central area.

An Analysis of Aerosol Mass Concentrations and Elemental Constituents Measured at Cheongwon depending on the Backward Trajectories of Air Parcel in East Asia in 2011 (2011년 동아시아에서 기류의 이동 경로에 따른 청원에서 측정한 에어로졸 질량 농도 및 원소 성분 분석)

  • Kim, Hak-Sung;Byun, Kwang-Tae;Chung, Yong-Seung;Choi, Hyun-Jung;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.855-863
    • /
    • 2012
  • This study analyzed mass concentrations of TSP, PM10 and PM2.5 and elemental constituents according to the isentropic backward trajectories of air parcel from Cheongwonin East Asia during the period January - October, 2011. Mass concentrations of the continental polluted airflow (CP) showed levels of TSP and PM10 mass concentrations higher than the continental background airflow (CB). Also, PM2.5 mass concentrations of anthropogenic fine particles ran higher in CP than in CB. The elemental constituents and elemental constituent ratio ended up varying depending on the origin of atmospheric aerosols generated. The average absolute content of elemental constituents reached its height in CB, the ratio of anthropogenically originating elements (PE) among the all elements (AE) analyzed marked a high in CP, and Mg+Na/AE reached its height in the oceanic airflow (OA). At the same time, TSP, PM10 and PM2.5 mass concentrations, the ratio of PM2.5/TSP and PE/AE element ratio ran higher in CP than CB. Episodes of large-scale transport of atmospheric pollutants as observed at Cheongwon were 8 cases and 22 days. The ratios of PM10, PM2.5 among TSP mass concentrations showed different results and the ratios of PM2.5 showed an increasing trend in the episodes of anthropogenic air pollution transport. Overall, dustfall episodes show a level of elemental constituents higher than those of anthropogenic air pollution.Dustfall episodes were observed to contain more of Fe, Al and Ca originating from continental soils and those of air pollution were observed to contain more of Zn, Mn, Cu and Pb. By difference in contents of absolute elemental constituents, episodes of anthropogenic air pollution showed a high PE/AE rate, and dustfall episodes a high SE/AE rate.

Regional Background Levels of Carbon Monoxide Observed in East Asia during 1991~2004 (1991~2004년 동아시아에서 관측한 일산화탄소의 지역적 배경 농도)

  • Kim, Hak-Sung;Chung, Yong-Seung
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.643-652
    • /
    • 2006
  • Data of the carbon monoxide concentration observed in Mt. Waliguan in China (WLG), Ulaan Uul in Mongolia (UUM), Tae-ahn Peninsula in Korea (TAP), and Ryori in Japan (RYO) were analyzed for a long period between 1991 and 2004. The annual average concentration of carbon monoxide was the highest at TAP $(233{\pm}41ppb)$ followed by $RYO(171{\pm}36ppb),\;UUM(155{\pm}26ppb),\;and\;WLG(135{\pm}22ppb)$. The seasonal variations being high in spring and low in summer were observed in other areas of Eastern Asia except WLG. TAP was high in carbon monoxide concentration in all seasons compared to WLG, UUM and RYO and shows wide distribution of concentration in the histogram, which is caused by the influence of large-scale air pollution due to its downwind location close to the East Asian continent, China in particular. Also, our data was compared with data measured at Mauna Loa (MLO) in Hawaii. According to the origin of the isentropic backward trajectory and its transport passage, carbon monoxide concentration observed in TAP was analyzed as follows: continental background airflows (CBG) were $216{\pm}47ppb$; regionally polluted continental airflows (RPC) were $316{\pm}56ppb$; Oceanic background airflows (OBG) were $108{\pm}41ppb$; and Partly perturbed oceanic airflows (PPO) were $161{\pm}6ppb$. The high concentration of carbon monoxide in TAP is due to the airflow from East Asian continent origin rather than that from the North Pacific origin. Especially, RPC which passes through the eastern China appeared to be the highest in concentration in spring, fall, and winter. However, OBG was affected by the North Pacific air mass with a low carbon monoxide concentration in summer. The NOAA satellite images and GEOS-CHEM model simulation confirmed a large-scale air pollution event that was in the course of expansion from southeastern China bound to the Korean Peninsula and the Korea East Sea by way of the Yellow Sea.