• Title/Summary/Keyword: Backscattering coefficients

Search Result 65, Processing Time 0.026 seconds

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

Measurements of Microwave Polarimetric Backscattering from a Wet Soil Surface and Comparison with a Semi-empirical Scattering Model

  • Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.154-157
    • /
    • 1999
  • Microwave polarimetric backscattering from a wet soil surface had been measured using a Ku-band polarimetric scatterometer at the incidence angles ranging from 10$^{\circ}$ to 70$^{\circ}$ Since the accurate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. The measured polarimetric backscattering coefficients (vv-, hh-, vh-, hv-polarizations) were compared with theoretical models and empirical models. A new semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarimetric radar measurements and the knowledge based on the theoretical and numerical solutions. The model was found to yield very good agreement with the backscattering measurements of this study.

  • PDF

RELATIONSHIP BETWEEN THE SURFACE ROUGHNESS PARAMETERS AND THE RADAR BACKSCATTER OF A BARE SURFACE

  • Oh, Yi-Sok;Hong, Jin-Yong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.520-523
    • /
    • 2006
  • Whereas it is well known that the surface roughness parameters, the RMS height and the correlation length, of a natural soil surface are underestimated with a short surface profile, it is not clear how much the underestimated surface parameters affect the backscattering coefficients of the surface for various incidence angles and polarizations. The backscattering coefficients of simulated and measured surface profiles are computed using the integral equation method (IEM) and analyzed in this paper to answer this question. It is shown that the RMS error of the backscattering coefficients between 5-m- and 1-m-long measured surface profiles is 1.7 dB for vv-polarization and 0.5 dB for hh-polarization at a medium range of incidence angle ($15^{\circ}{\leq}{\theta}{\leq}70^{\circ}$), while the surface roughness parameters are significantly reduced; from 2.4 cm to 1.5 cm for the RMS height s and from 35.1 cm to 10.0 cm for the autocorrelation length l. This result is verified with numerous simulations with various roughness conditions and various wavelengths.

  • PDF

Estimation of Soil Moisture Content from Backscattering Coefficients Using a Radar Scatterometer (레이더 산란계 후방산란계수를 이용한 토양수분함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Jae-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2012
  • Microwave remote sensing can help monitor the land surface water cycle, crop growth and soil moisture. A ground-based polarimetric scatterometer has an advantage for continuous crop using multi-polarization and multi-frequencies and various incident angles have been used extensively in a frequency range expanding from L-band to Ka-band. In this study, we analyzed the relationships between L-, C- and X-band signatures and soil moisture content over the whole soybean growth period. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. L-band backscattering coefficients were higher than those observed using C- or X-band over the period. Backscattering coefficients for all frequencies and polarizations increased until Day Of Year (DOY) 271 and then decreased until harvesting stage (DOY 294). Time serious of soil moisture content was not a corresponding with backscattering over the whole growth stage, although it increased relatively until early August (R2, DOY 224). We conducted the relationship between the backscattering coefficients of each band and soil moisture content. Backscattering coefficients for all frequencies were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.50$). However, we found that L-band HH polarization was correlated with soil moisture content (r=0.90) when Leaf Area Index (LAI)<2. Retrieval equations were developed for estimating soil moisture content using L-band HH polarization. Relation between L-HH and soil moisture shows exponential pattern and highly related with soil moisture content ($R^2=0.92$). Results from this study show that backscattering coefficients of radar scatterometer appear effective to estimate soil moisture content.

Numerical Computation of the Backscattering Coefficients of Rice Fields Using the Impedance Boundary Condition, Moment Method and Monte Carlo Method (임피던스 경계 조건, 모멘트 법과 몬테 카를로 방법을 이용한 논의 산란계수 수치적 계산과 측정 데이터와의 비교)

  • Hong, Jin-Young;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.819-827
    • /
    • 2007
  • A numerical algorithm for estimating precise backscattering coefficients of rice fields is proposed and its accuracy is verified in this paper. After a bunch of rice plants above water surface is modeled with a bunch of randomly oriented lossy dielectric bodies above an impedance surface and the equivalent volume currents of the lossy dielectrics are computed using the moment method. Then, the scattered fields of a rice field with many bunches are computed with a Monte Carlo method, and consequently the backscattering coefficient of the rice field is computed for various incidence angles and polarizations. Finally, the backscattering coefficient of a rice field is measured at 1.85 GHz using an R-band scatterometer system, and these experimental data are used to verify the numerical algorithm proposed in this paper. It is found that the numerical computation results agree well with the measurement data.

Precise Measurement Method and Error Analysis with Roughness Variables for Estimation of Scattering Coefficients (지표면 산란 계수 예측을 위한 정확한 지표면 거칠기 변수 측정 방법 및 오차 분석)

  • Kweon, Soon-Koo;Hwang, Ji-Hwan;Oh, Yisok;Hong, Sungwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • The input parameters of scattering models for computing the backscattering coefficients of earth terrains are mainly soil moisture and surface roughness. The backscattering coefficients of soil surfaces are more sensitive to surface roughness than soil moisture. In this study, we propose a precise measurement method for roughness parameters and analyze measurement errors. We measured surface roughness using a pin-board profiler(1 m, 0.5 cm interval) and a laser profiler(1 m, 0.25 cm interval). The measurement differences between two profilers in an average sense are 0.097 cm for root-mean-square (RMS) height and 1.828 cm for correlation length. The analysis of the correlation functions and relative errors shows that the laser measurements are more stable than the pin-board measurements. The differences of the calculated backscattering coefficients using a surface scattering model between pin-board and laser profiler measurements are less than 1 dB.

Monitoring Wheat Growth by COSMO-SkyMed SAR Images (COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong;Lee, Hoonyol;Oh, Yisok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • We analyzed the relationships between backscattering coefficients of wheat measured by COSMO-SkyMed SAR and biophysical measurements such as biomass, vegetation water content, and soil moisture over an entire wheat growth period. Backscattering coefficients increased until DOY 129 and then decreased along with fresh weight, dry weight, and vegetation water content. Correlation analysis between backscattering and wheat growth parameters revealed that backscatter correlated well with fresh weight (r=0.88), vegetation water content (r=0.87), and dry weight (r=0.80), while backscatter did not correlated with soil moisture (r=0.18). Prediction equations for estimation of wheat growth parameters from the backscattering coefficients were developed.

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Retrieval of surface parameters in tidal flats using radar backscattering model and multi-frequency SAR data

  • Choe, Byung-Hun;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • This study proposes an inversion algorithm to extract the surface parameters, such as surface roughness and soil moisture contents, using multi-frequency SAR data. The study areas include the tidal flats of Jebu Island and the reclaimed lands of Hwaong district on the western coasts of the Korean peninsula. SAR data of three frequencies were accordingly calibrated to provide precise backscattering coefficients through absolute radiometric calibration. The root mean square (RMS) height and the correlation length, which can describe the surface roughness, were extracted from the backscattering coefficients using the inversion of the Integral Equation Method (IEM). The IEM model was appropriately modified to accommodate the environmental conditions of tidal flats. Volumetric soil moisture was also simultaneously extracted from the dielectric constant using the empirical model, which define the relations between volumetric soil moistures and dielectric constants. The results obtained from the proposed algorithm were verified with the in-situ measurements, and we confirmed that multi-frequency SAR observations combined with the surface scattering model for tidal flats can be used to quantitatively retrieve the geophysical surface parameters in tidal flats.

RETRIEVAL OF SOIL MOISTURE AND SURFACE ROUGHNESS FROM POLARIMETRIC SAR IMAGES OF VEGETATED SURFACES

  • Oh, Yi-Sok;Yoon, Ji-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • This paper presents soil moisture retrieval from measured polarimetric backscattering coefficients of a vegetated surface. Based on the analysis of the quite complicate first-order radiative transfer scattering model for vegetated surfaces, a simplified scattering model is proposed for an inversion algorithm. Extraction of the surface-scatter component from the total scattering of a vegetation canopy is addressed using the simplified model, and also using the three-component decomposition technique. The backscattering coefficients are measured with a polarimetric L-band scatterometer during two months. At the same time, the biomasses, leaf moisture contents, and soil moisture contents are also measured. Then the measurement data are used to estimate the model parameters for vv-, hh-, and vh-polarizations. The scattering model for tall-grass-covered surfaces is inverted to retrieve the soil moisture content from the measurements using a genetic algorithm. The retrieved soil moisture contents agree quite well with the in-situ measured soil moisture data.

  • PDF