• 제목/요약/키워드: Backpropagation algorithm

검색결과 351건 처리시간 0.036초

신경망과 적응적 스킨 칼라 모델을 이용한 얼굴 영역 검출 기법 (Human Face Detection from Still Image using Neural Networks and Adaptive Skin Color Model)

  • 손정덕;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.579-582
    • /
    • 1999
  • In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.

  • PDF

ART-1 기반 퍼지 지도 학습 알고리즘 (ART1-based Fuzzy Supervised Learning Algorithm)

  • 김광백;조재현
    • 한국정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.883-889
    • /
    • 2005
  • 다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART-1에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ART-1과 퍼지 단층 지도 학습 알고리즘을 결합한 ATR-1 기반 퍼지 다층 지도 학습 알고리즘을 제안 한다. 자가 생성을 이용한 제안된 퍼지 지도 학습 알고리즘은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART-1을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 주민등록증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상도 개선되었다.

Generalized Clustering Network를 이용한 전방향 학습 알고리즘 (Feed-forward Learning Algorithm by Generalized Clustering Network)

  • 민준영;조형기
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.619-625
    • /
    • 1995
  • 본 연구에서는 역전파(backpropagationlk)학습 알고리즘에 대체될 수 있는 전방향 학습 알고리즘에 준하는 혼합 인식모형을 구성한다. 본 알고리즘은 Nikhil R. Pal (1993)이 제안한 GLVQ(Generalized Learning Vector Quantization)를 이용하여 패턴을 클러스터링 한 다음 비유사성(dissimilarity)을 가진 패턴끼리 재구성(regrouping) 하여 단순 퍼셉트론(simple perceptron)을 이용하여 group별 학습을 한다. 일반적으로 역전파학습인 학습시간이 많이 소요된다는 단점이 있다[1]. 본 알고리즘의 특징으로 는 feed-forward학습이기 때문에 학습시간이 단축될 뿐만 아니라 전체 패턴을 그룹별 로 나누어 학습을 하기 때문에 인식률도 향상 시킬 수 있다. 본 알고리즘에 적용한 데 이타는 250개의 ASCII코드를 16$\times$8격자에 정규화시킨 비트 패턴(bit pattern)을 이용 하였다. 실험결과 250개의 패턴을 10개의 클러스터로 나누어 학습을 시켰을 때 각 클 러스터별 평균반복횟수 94.7회만에 250개의 ASCII코드를 100% 인식할 수 있었다.

  • PDF

인공신경망을 이용한 탄성파 잡음제거 (Minimisation Technique for Seismic Noise Using a Neural Network)

  • 황학수;이상규;이태섭;성낙훈
    • 지구물리와물리탐사
    • /
    • 제3권3호
    • /
    • pp.83-87
    • /
    • 2000
  • 송신원의 파워 증가가 제한되고 인공잡음이 존재하는 지역에서 양질의 탄성파 자료를 획득하기 위하여 근/원기준점(reference)을 이용한 탄성파 잡음예측필터를 개발하였다. 잡음예측필터에 사용된 방법은 backpropagation 알고리즘을 이용한 3층의 인공신경망(neural network)으로서, 훈련자료(training data) 및 검증자료(testing data)에 훈련된 잡음예측필터를 적용시 신호대잡음비(signal-to-noise ration)를 약 3배 정도 증가시켰다. 그러나, 일반적으로 전기, 전자탐사 자료의 질을 향상하기 위해 사용되는 스케일링(scaling)기법으로는 전혀 탄성파의 잡음을 제거할 수 없었다.

  • PDF

유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구 (A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network)

  • 박인규
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.91-97
    • /
    • 2011
  • 본 논문에서는 Mackey-Glass시계열의 예측에서 유전자알고리즘을 이용하는 구조적인 동정과 뉴로퍼지에 의한 파라미터 동정의 학습방법과 하이브리드 시스템을 제안하였다. 본 방법은 두 가지로 구성되었다. 하나는 입력공간에 대한 분할을 통하여 유전 알고리즘을 이용하여 퍼지 규칙베이스를 구축하고 다른 하나는 이 규칙베이스를 토대로 기울기 최하강법을 이용하여 제어규칙의 변수에 대한 파라미터 동정이다. 제안된 방법을 성능을 검증하기 위하여 입력의 패턴을 시간간격에 따라서 x(t-3), x(t-6)과 x(t-9)의 세 가지로 구성하였다. 많은 시뮬레이션을 통하여 유전알고리즘에 의한 구조적인 동정으로 인하여 학습초기에 오차가 작은 것을 알 수 있었다. 표2에서와 같이 성능을 확인 할 수 있었다.

디지털 선박 생체 감성 인식 LED 조명 제어 시스템 설계 및 구현 (A Design and Implementation Digital Vessel Bio Emotion Recognition LED Control System)

  • 송병호;오일환;이성로
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.102-108
    • /
    • 2011
  • 기존의 선박 내 조명 제어 시스템은 구축의 복잡성, 높은 설치 비용 및 유지 관리 비용 등의 문제점이 있다. 본 논문에서는 디지털 선박 환경에서 저비용, 고효율의 조명제어 시스템을 설계하였다. 사용자의 생체 정보(맥박, 이완기 혈압, 수축기 혈압, 혈당)를 무선 센서들을 통하여 획득한 후 감성을 인식하여 LED 조명을 제어하는 시스템으로서, 맥박 센서, 혈압 센서, 혈당 센서 등의 입력치를 받아 데이터베이스에 저장한 후 역전파 신경망 알고리즘을 이용하여 감성을 분류한다. 3,000개의 데이터 집합을 사용하여 역전파 신경망을 실험한 결과 약 88.7%의 정확도를 가졌다. 분류된 감성은 HP(Hewlett-Packard)의 'The Meaning of Color'에서 정해 놓은 20개의 컬러 감성 모델과 비교하여 가장 적절한 출력치를 찾아 적색, 녹색, 청색 LED Lamp에 전류 또는 주파수를 조절하는 방법으로 LED Lamp의 밝기 또는 광색을 조절함으로써 소모 전력을 약 20%로 절감하였다.

An attempt to reduce the number of training in the artificial neural network

  • Omae, Akihiro;Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1256-1258
    • /
    • 1990
  • A large number of trainings are requested for the artificial neural network using the backpropagation algorithm. It is shown that one dimensional search technique is effective to reduce the number of trainings through some numerical simulations.

  • PDF

활성화 함수의 이득 가변화를 이용한 역전파 알고리즘의 성능개선 (The Performance Improvement of Backpropagation Algorithm using the Gain Variable of Activation Function)

  • 정성부;이현관;엄기환
    • 전자공학회논문지CI
    • /
    • 제38권6호
    • /
    • pp.26-37
    • /
    • 2001
  • 일반적인 역전파 알고리즘의 여러 가지 문제점들을 개선하기 위하여 활성화 함수의 이득을 퍼지 로직 시스템을 이용하여 자동 조절하는 방식을 제안하였다. 퍼지 로직 시스템을 구성하기 위하여 먼저 활성화 함수의 이득의 변화가 학습율, 연결강도 바이어스 등의 변화와 등가인 관계를 조사하였다 퍼지 로직 시스템의 입력은 마지막층에 대한 오차의 감도와 은닉층에 대한 오차의 평균 감도를 사용하였고, 출력은 활성화 함수의 이득을 사용하였다. 제안한 방식과 일반적인 역전파 알고리즘을 패리티 문제, 함수 근사화 문제 및 패턴 인식 문제등에 대하여 시뮬레이션하여 비교 검토한 결과 수렴비, 평균 학습 반복수, 정말도 및 새로운 입력 에 대한 원하는 오차 범위의 출력을 얻는 등의 성능이 개선됨을 알았다.

  • PDF

초음파 비파괴 검사기법에 의한 용접결함 분류성능 비교 (Performance Comparison of Welding Flaws Classification using Ultrasonic Nondestructive Inspection Technique)

  • 김재열;유신;김창현;송경석;양동조;김유홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself. Through this process, we comfirmed advantages/disadvantages of four algorithms and identified application methods of four algorithms.

  • PDF