• Title/Summary/Keyword: Backlight image

Search Result 53, Processing Time 0.017 seconds

Design of Readout Circuit with Dual Slope Correction for photo sensor of LTPS TFT-LCD (LTPS TFT LCD 패널의 광 센서를 위한 dual slope 보정 회로)

  • Woo, Doo-Hyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.31-38
    • /
    • 2009
  • To improve the image quality and lower the power consumption of the mobile applications, it is the one of the best candidate to control the backlight unit of the LCD module with ambient light. Ambient light sensor and readout circuit were integrated in LCD panel for the mobile applications, and we designed them with LTPS TFT. We proposed noble start-up correction in order to correct the variation of the photo sensors in each panel. We used time-to-digital method for converting photo current to digital data. To effectively merge time-to-digital method with start-up correction, we proposed noble dual slope correction method. The entire readout circuit was designed and estimated with LTPS TFT process. The readout circuit has very simple and stable structure and timing, so it is suitable for LTPS TFT process. The readout circuit can correct the variation of the photo sensors without an additional equipment, and it outputs the 4-levels digital data per decade for input luminance that has a dynamic range of 60dB. The readout rate is 100 times/sec, and the linearity error for digital conversion is less than 18%.

A study on vertical alignment liquid crystal devices for electrically polarization controlled camera (전기적 편광 조절형 카메라를 위한 수직 배향형 액정 소자 연구)

  • Na-Kyung Lee;Hyeon-Sik Ahn;Sung-Min Kim;Min-Sang Kim;Seungseo Park;Yoonseuk Choi
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.512-517
    • /
    • 2023
  • In this study, we propose a liquid crystal-based polarization control technology that can control polarization by adjusting the voltage applied to the liquid crystal, and apply it to a Closed-circuit Television (CCTV) to transmit only the desired angle of polarized light. CCTV with conventional polarizing films cannot control polarization because they focus on backlight compensation, so light reflected from the water surface or highlights reflected from vehicles interfere with subject identification. However, the Vertical Alignment mode allows the polarization to be adjusted electrically, so that only the polarized light at the user's desired angle is transmitted, eliminating reflected highlights. The images obtained using this technique are optimized by computer software. Liquid crystal polarization panels, which can electrically control the polarization angle, transmittance, and polarization rate, have been applied to polarized image monitoring device to improve subject identification in conventional CCTV.

Adaptive Color Correction Method to Monitor in Color Laser Printer (모니터에 적응적인 칼라 레이저 프린터의 색 변환 방법)

  • Jang, In-Su;Son, Chang-Hwan;Kim, Kyung-Man;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • The Color Management System in recent printers adopts ICC profiles for both monitors and printers. However, the ICC profile doesn't contain the characteristics of reproduced color on each monitor, because the color on each monitor is changed by user adjustment such as color temperature, brightness, and contrast adjustment. It is also depended on the backlight type and lifetime. As a result, unwanted color is reproduced on the printed paper, not like that on the monitor. To overcome the color difference between monitors and printers, it is needed to control the information of ICC profile. That is, first, the ICC profile is generated by the measurement of monitors having user set, then, through the CMS, the color on monitors can be produced on printed paper. However, it is difficult to apply the above system for normal users due to absence of measuring equipment and time consuming process. Therefore, this paper proposes a novel color matching technique based on the estimation of condition for each monitor having user set. The estimation is performed by a simple comparison visual test using a test image on printed paper and monitor. Then, the condition of monitor is applied to the ICC profile. As a result, the new ICC profile contains the color difference between user monitor and printer. The experimental results show the printed images using our proposed method have almost similar color with those on monitors.