• Title/Summary/Keyword: Background Sound

Search Result 321, Processing Time 0.02 seconds

Functional Analysis of Music Used in Film

Drone Location Tracking with Circular Microphone Array by HMM (HMM에 의한 원형 마이크로폰 어레이 적용 드론 위치 추적)

  • Jeong, HyoungChan;Lim, WonHo;Guo, Junfeng;Ahmad, Isitiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.393-407
    • /
    • 2020
  • In order to reduce the threat by illegal unmanned aerial vehicles, a tracking system based on sound was implemented. There are three main points to the drone acoustic tracking method. First, it scans the space through variable beam formation to find a sound source and records the sound using a microphone array. Second, it classifies it into a hidden Markov model (HMM) to find out whether the sound source exists or not, and finally, the sound source is In the case of a drone, a sound source recorded and stored as a tracking reference signal based on an adaptive beam pattern is used. The simulation was performed in both the ideal condition without background noise and interference sound and the non-ideal condition with background noise and interference sound, and evaluated the tracking performance of illegal drones. The drone tracking system designed the criteria for determining the presence or absence of a drone according to the improvement of the search distance performance according to the microphone array performance and the degree of sound pattern matching, and reflected in the design of the speech reading circuit.

Extraction of frequency line feature of sonar signal using a neural network (신경회로망을 이용한 수중음향신호의 주파수선 특징 추출)

  • 하석운;이성은;남기곤;윤태훈;김재창;김길철
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.51-58
    • /
    • 1997
  • In passive sonar, the frequency spectrum of a sound radiated by underwater moving targets is composed of a broadband nonuniform background noise and narrowband discrete tonals. To detect the tonals, the background noise is estimated and removed. Using the existing algorithms that estimate the background noise, a week tonals are not detected. Because a freuqency line that is formed by tonals which are being extracted continuously is a feture of the target, we are nessesory to efficiently detect the tonals that compose the frequncy line. In this paper, we propose an efficient neural network that can remove automatically the background and detect the even errl tonals, and we extract the frequency line feature on the spectrogram by the proposed algorithm. The experimental results for a ship's radiated sound show a better performance in comparison with the existing TPM algorithm.

  • PDF

Analysis of Sound Quality Parameters of Sound Sources applied for Soundscape Design (사운드 스케이프 적용 음원의 음질 지수 분석)

  • Park, Hyeon-Ku;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.814-819
    • /
    • 2004
  • When we evaluate sound, there are various methods for noise such as A-weighted SPL(sound pressure level), NC(noise criteria), NR(noise rating) and SIL(speech interference level) etc. however, it is not sufficient for the sounds supplied to public places used in soundscape design. Consequently it is needed to develop the tool for evaluating the good acoustical environment and futhermore quantifying the effect of improvement by supplying sound sources. In this study, it was tried to analyse the sound sources applied for soundscape design using sound quality parameters. The sound sources used were natural sound artificial sound. For the sound quality parameters, Loudness(L), Sharpness(S), Fluctuation strength(FL), Tonality(T), Roughness(R), Unbiased Annoyance(UA) were used and sound quality values were compared both natural and artificial sounds, depending on the convolution of sound sources with background noise, the duration, the frequency contents and the SPL. As a result, the values of L and UA have shown to be changed comparing to the other parameters, and it is necessary to analyse the correlation with subjects' responses.

  • PDF

The Korean's Sound Recognition Impressed in Ancient Sijo (고시조에 표현된 한국인의 소리인식 조사에 관한 연구)

  • Lee, Tai-gang;Jang, Gil-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.724-730
    • /
    • 2005
  • Literary works contain various human emotion and historical, cultural background. It is very significant to understand sound recognition and receptions represented in many literary works. This study aims to investigate the sound impression on ancient Korean Sijo( Korean Verse) involved various traditional korean emotion, which were expressed in different situations. Firstly we selected the appropriate Sijo to express sounds, and then classified the sound, analyzed the meaning of recognition to the sound. The number of 297 sounds were classified into 13 categories, and 20 emotional meanings. Especially, 'internal sadness' characterized the korean rooted emotion were more expressed than other meanings and this meaning were symbolized by the sound of wild geese and cuckoos.

Measurement of the Average Speed of Ultrasound and Implementation of Its Imaging Using Compounding Technique in Medical Ultrasound Imaging (초음파 의료영상에서 컴파운딩 기법을 이용한 초음파의 평균 음속도의 측정과 음속도 영상의 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Choi, Min-Joo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.233-240
    • /
    • 2009
  • Using a spatial compound imaging technique in a medical ultrasound imaging system, the average speed of sound in a medium of interest is measured, and imaging of its distribution is implemented. When the brightness reaches the highest level in an ultrasonic image obtained as the speed of sound used in focusing is varied, it turns out that the focusing has been accomplished satisfactorily and that the speed of sound which has been adopted becomes the sought-after average speed of sound. Because spatial compound imaging provides many different views of the same object, the adverse effect of erroneous speed-of-sound estimation tends to be more severe in compound imaging than in plain B-mode imaging. Thus, in compound imaging, the average speed of sound even in the case of speckled images can be accurately estimated by observing the brightness change due to different speeds of sound employed. Using this new method that offers spatial diversity, we can construct an image of the speed of sound distribution in a phantom embedded with a 10-mm diameter plastic cylinder whose speed of sound is different from that of the background. The speed of sound in the cylinder is found to be different from that of the surrounding medium.

Method of A-Weighted Sound Pressure Level Measurement for Fans, Blowers and Compressors (송풍기${\cdot}$압축기의 소음레벨 측정방법 KS B 6361의 개정)

  • Lee, Seungbae;Kim, Kyoung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.189-199
    • /
    • 1999
  • The revision was proposed for methods A-weighted sound pressure measurement for fans, blowers and compressors in order to apply newly developed measurement techniques to KS B 6361 established in 1987. This proposal includes modification of terminologies, revision of sound power methods for radiated sound from the body, inclusion of In-duct measurement method, and correction method for flow noise upon microphon.

  • PDF

Sound Source Localization and Separation for Emotional Robot (감성로봇을 위한 음원의 위치측정 및 분리)

  • 김경환;김연훈;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.116-123
    • /
    • 2003
  • These days, the researches related with the emotional robots are actively investigated and in progress. And human language, expression, action etc. are merged in the emotional robot to understand the human emotion. However, there are so many sound sources and background noise around the robot, that the robots should be able to separate the mixture of these sound sources into the original sound sources, moreover to understand the meaning of voice of a specific person. Also they should be able to turn or move to the direction of a specific person to observe his expression or action effectively. Until now, the researches on the localization and separation of sound sources have been so theoretical and computative that real-time processing is hardly possible. In this reason for the practical emotional robot, fast computation should be realized by using simple principle. In this paper the methods for detecting the direction of sound sources by using the phase difference between peaks on spectrums, and the separating the sound sources by using fundamental frequency and its overtones of human voice, are proposed. Also by using these methods, it is shown that the effective and real-time localization and separation of sound sources in living room are possible.

A Study on the Nature of Sound and the Hearing Mechanism (소리의 특성 및 청지각기능에 대한 고찰)

  • Lee, Jung-Hak;Kim, Jin-Sook
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.167-179
    • /
    • 1999
  • The hearing mechanism is a complicated system. Sound is generated by a source that sends out air pressure or power. The pressure or power makes the sound waves. These waves reach the eardrum, or tympanic membrane, which vibrates at a rate and magnitude proportional to the nature of the sound waves. The tympanic membrane transforms this vibration into the mechanical energy in the middle ear, which in turn converts it to the hydraulic energy in the fluid of the inner ear. The hydraulic energy stimulates the sensory cells of the inner ear which send neuroelectrical impulses to the central auditory nervous system. The passive perception of auditory information starts just here. The listener gives attention to the speech sound, differentiates the sound from background noise, and integrates his experience with similar sounds. The listener then puts all of these aspects of audition into the context of the moment to identify the nature of sound. This has a major role in human communication. This paper provides an overview of the nature and characteristics of sound, the structure and function of the auditory system, and the way in which sound is processed by the auditory system.

  • PDF

Evaluation on the Field Application of Spontaneous Acoustic Field Reproduction System (능동형 음장조정시스템의 현장적용 평가)

  • Jeon, Ji-Hyeon;Shin, Yong-Gyu;Kang, Sang-Woo;Min, Byeong-Cheol;Kook, Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.616-621
    • /
    • 2006
  • A began of this study is to verify Spontaneous Acoustic Field Reproduction System(SAFRS), developed as an embodiment of creating agreeable sound environment, with evaluation on the field application. SAFRS is a system to sense changes of surroundings and produce sounds, which can go well with environment elements sensed by the system in to the space. The sound which can go well with environment elements is sound which judged by individual evaluation to be so, the classification of the preferred sounds according to the mood of the space was suggested in the former study. So, SAFRS was applied into the Square of D University to evaluate effectiveness of the system. The executed evaluations were 1) evaluation on sounds perception, frequency, volume and matchability with the space, 2) image evaluation on the square and sound environment and 3) evaluation on sound environment with existing sounds, fountains sound, sound produced by SAFRS, and both fountains sound and sound produced by SAFRS. Verifying SAPRS of field application was deduced from those evaluations. Theresultsofthestudyarefollowing: Though the system was applied into the space, the volume of the sounds shouldn't be too high. And with visual surroundings, the effectiveness of the system would be increased. At the results of four evaluations, the result of day evaluation is; both fountains sound and sound produced by SAFRS>fountains sound>sound produced by SAFRS>existing sounds, the result of night evaluation is; sound produced by SAFRS>both fountains sound and sound produced by SAFRS>fountains sound>existing sounds and these results pointed out that sounds environment produced by the system was highly evaluated due to less background sounds.

  • PDF