KSII Transactions on Internet and Information Systems (TIIS)
/
제8권6호
/
pp.1946-1963
/
2014
Most background subtraction methods focus on dynamic and complex scenes without considering robustness against noise. This paper proposes a background subtraction algorithm based on dictionary learning and sparse coding for handling low light conditions. The proposed method formulates background modeling as the linear and sparse combination of atoms in the dictionary. The background subtraction is considered as the difference between sparse representations of the current frame and the background model. Assuming that the projection of the noise over the dictionary is irregular and random guarantees the adaptability of the approach in large noisy scenes. Experimental results divided in simulated large noise and realistic low light conditions show the promising robustness of the proposed approach compared with other competing methods.
본 연구에서는 레코드 컨티뉴엄 이론의 기원을 20세기 중반 이후 호주의 기록관리 상황 및 라이프사이클 모델과 결부하여 분석하였다. 레코드 컨티뉴엄 이론에 대한 심도 있는 이해를 위해서는 형성 배경 및 과정에 대한 고찰이 필요하며, 아울러 라이프사이클 모델에 대한 반향으로 구축된 이론체계란 점에서 라이프사이클 모델 자체에 대한 분석 역시 전제되어야 하기 때문이다. 이를 위해 우선 레코드 컨티뉴엄 이론형성의 역사적 배경 분석을 목표로, 1950년대 호주의 독립된 공공기록관리 체제의 모색 과정 속에서 미국의 라이프사이클 모델을 집중적으로 조명하게 된 배경 및 과정을 고찰하였다. 이어 라이프사이클 모델의 형성 배경과 함께 의미 및 한계를 고찰하였다. 라이프사이클 모델의 주요 내용 및 의의, 한계를 고찰하기 위해서는 어떠한 상황 속에서 형성되었는지에 대한 분석이 필요하며, 아울러 레코드 컨티뉴엄 이론이 라이프사이클 모델에 대한 비판을 통해 형성되었다면, 라이프사이클 모델이 지닌 의의 및 한계에 대한 고찰이 필요하기 때문이다. 이러한 분석을 토대로 마지막으로 호주의 새로운 기록생산 환경 속에 라이프사이클 모델의 적용에 따른 문제점과 더불어, 이를 기반으로 새롭게 태동된 레코드 컨티뉴엄 이론의 기원이 된 요소들을 고찰하였다.
본 논문은 조명의 변화가 심한 영상에서 손 형태를 안정적으로 인지하는 기법에 관한 것이다. 제안한 방법은 HSI 색상공간에서 색상(Hue) 및 색상 기울기(Hue-Gradient)를 기반으로 정의된 배경모델을 구축하고, 실시간으로 입력되는 영상과의 배경차분(background subtraction)기법을 이용하여 배경과 손을 구분한다. 추출된 손의 영역으로부터 18가지의 특징요소를 추출하고 이를 기반으로 다중클래스 SVM(Support Vector Machine) 학습 기법을 사용하여 손의 형태를 인지한다. 제안 기법은 색상 기울기를 배경 차분에 적용함으로써, 조명 환경이 배경 모델의 조명과 다르게 급격한 변화가 이루어졌을 때도 안정적으로 손의 윤곽정보를 추출할 수 있도록 하였다. 또한, 실시간 처리를 저해하는 복잡한 손의 특성정보 대신, OBB의 크기에 대하여 정규화된 두 개의 고유값과 객체 기반 바운딩 박스(OBB)를 구성하는 16개 세부 영역에서의 손 윤곽픽셀의 개수를 손의 특성정보로 사용하였다. 본 논문에서는 급격한 조명 변화 상황에서 기존 RGB 색상요소를 기반으로 하는 배경차분법과 색상을 기반으로 하는 배경차분법, 본 논문에서 제안하는 색상 기울기 기반 배경 차분법의 결과를 비교함으로써 제안 기법의 안정성을 입증하였다. 6명의 실험대상자의 1부터 9까지의 수지화 2700개의 영상으로부터 손 특성 정보를 추출하고 이에 대하여 훈련을 통한 학습 모델을 생성하였다. 학습모델을 기반으로 실험자 6인의 손 형태 1620개의 데이터에 대하여 인지 실험을 실시하여 92.6%에 이르는 손 형태 인식 성공률을 얻었다.
실외에서 영상기반의 화재감지는 시간, 날씨 변화에 따른 조도와 그림자 등에 의하여 성능에 영향을 받는다. 본 논문에서는 주간에 화재감지를 위하여 외부조명 변화에 강건한 배경추정 알고리즘과 결합된 연기검출 방법을 제안한다. 혼합 가우스 모델(mixture Gaussian model)을 배경추정에 적용하고 분리된 후보영역에 대하여 연기의 통계적 특성을 적용하여 연기를 검출한다. 주간 야외에서 획득한 영상에 대하여 제안하는 방법이 실외 연기검출에 유용한 것을 확인한다.
In this paper, we are focused to develop the simplified speaker verification algorithm without background speaker models, which will be adopted in the portable speaker verification system equipped in portable terminals such as mobile phone and PMP. According to the tolerance interval analysis, the population of someone's speaker model can be represented by a suitable number of selected independent samples of speaker model. So we can make the representative speaker model and threshold under the specified confidence level and coverage. Using proposed algorithm with the number of samples is 40, the experiments show that the false rejection rate is $3.0\%$ and the false acceptance rate $4.3\%$, worth comparing to conventional method's results, $5.4\%\;and\;5.5\%$, respectively. Next step of research will be on the suitable adaptation methods to overcome speech variation problems due to aging effect and operating environments.
This paper is aiming at implementation of real-time speaker verification system using DSP board. Dialog/4, which is based on microprocessor and DSP processor, is selected to easily control telephone signals and to process audio/voice signals. Speaker verification system performs signal processing and feature extraction after receiving voice and its ID. Then through computing the likelihood ratio of claimed speaker model to the background model, it makes real-time decision on acceptance or rejection. For the verification experiments, total 15 speaker models and 6 background models are adopted. The experimental results show that verification accuracy rates are 99.5% for using telephone speech-based speaker models.
본 논문에서는 HMM(Hidden Markov Model)방법에 기초하여 전경과 배경영역 뿐만 아니라 그림자 까지도 분할 할 수 있는 교통모니터링 방법을 제안하였다. 움직이는 물체의 그림자는 시각적 추적을 방해하기 때문에 이러한 문제점을 해결하기 위한 방법으로 각 화소나 영역을 3개의 카테고리 즉, 그림자, 전경, 배경물체로 분할하였다. 교통 모니터링 영상의 경우, 실험결과를 통해 제안된 방법의 효율성을 입증 할 수 있었다.
We present an efficient and robust measurement model for visual tracking. This approach builds on and extends work on subspace representations of measurement model. Subspace-based tracking algorithms have been introduced to visual tracking literature for a decade and show considerable tracking performance due to its robustness in matching. However the measures used in their measurement models are often restricted to few approaches. We propose a novel measure of object matching using Angle In Feature Space, which aims to improve the discriminability of matching in subspace. Therefore, our tracking algorithm can distinguish target from similar background clutters which often cause erroneous drift by conventional Distance From Feature Space measure. Experiments demonstrate the effectiveness of the proposed tracking algorithm under severe cluttered background.
본 논문에서는 사람의 신체 일부분을 추적하는 시스템을 위해서 피부영역을 추출하고 여러 개의 영역을 추적하는 다중 CAMShift 알고리즘(Multi Continuously Adaptive Mean Shift Algorithm)을 제안하였다. 입력 영상에서 피부영역을 추출하기 위해 영상의 RGB의 특정값을 기준으로 피부색에 적응적인 임계값을 적용하였다. 이때 적용된 피부영역을 양손, 얼굴 등에 초기 윈도우를 설정하였다. 이 영역들을 추적함에 있어 영역들 사이에 폐색 영역을 회피하기 위해 가우시안 배경 모델(Gaussian Background Model)을 사용하여 각 추적 영역들을 제한하였다. 또한 폐색영역에 가중치를 부가하여 확률분포영상에서 중심값을 이동시켜 폐색 영역을 회피하였다. 실험 결과 다중 물체들에 강인한 추적을 보이고 유사한 색상을 갖는 물체의 폐색 시에도 우수한 결과를 보임을 확인하였다.
최근 딥러닝을 이용한 이미지 매팅 방법에 관한 다양한 연구가 진행되고 있다. 특히, 사진측량 분야에서도 고품질의 실감모형을 제작하기 위해서는 촬영된 이미지에서 유물 정보를 추출하는 과정이 필요하며, 이와 같은 과정은 많은 시간과 인력이 들어 기존에는 크로마키를 이용하여 추출하는 방법이 많이 활용되고 있다. 그러나, 기존의 방법은 세부 분류에 대한 정확도가 떨어져 고품질 실감모형에 적용하기에는 어려움이 있었다. 본 연구에서는 사전배경정보와 훈련된 학습데이터를 이용하여 고해상도 유물 이미지에서 배경정보를 제거하고 추출된 유물 이미지에 대하여 정성적, 정량적 결과를 평가하였다. 그 결과 제안된 방법과 FBA(매뉴얼 트라이맵)이 정량적으로 높은 결과를 나타냈으며, 정성적 평가에서도 유물 주변부의 분류도가 높은 정확도를 보였다. 따라서 제안된 방법은 고해상도 유물 이미지 분류에 있어 사전배경정보 취득을 통하여 높은 정확도와 빠른 처리 속도를 나타냈으며, 실내 유물 촬영에서 그 활용 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.