• 제목/요약/키워드: Backbone

검색결과 1,090건 처리시간 0.03초

Catalytic Cyclopolymerization and Copolymerization of Diethyl Dipropargylmalonate by (toluene)Mo$(CO)_3

  • 전상진;심상철;조찬식;김태정;갈영순
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.1044-1046
    • /
    • 2000
  • Catalytic copolymerization of diethyl dipropargylmalonate (DEDPM) and phenylacetylene (PA) by Mo(CO)6 and (toluene) Mo(CO)3/chloranil has resulted in the expected copolymer consiting of a polyene backbone with five-and/or six-membered rings and th e PPA structure. Both complexes exhibited not only varying degree of catalytic activity depending upon the relative mole ratio of two monomers but also characterize the types of coploymers. The former yields the polyene backbone containing only five-membered rings as well as PA while the latter produces the polymers consisting of both five-and six-membered ring structure. Comparative studies show that Mo(CO)6 exhibits reactivity toward DEDPM alone, thus catalyzing initially metathesis cyclopoly-merization of DEDPM followed by copolymerization with PA while the (toluene)Mo(CO)3/chloranil system shows affinity for both PA and DEDPM.

Redistribution/Dehydrocoupling of Tertiary Alkylstannane $n-Bu_3 SnH$ Catalyzed by Group 4 and 6 transition Metal Complexes

  • 우희권;송선정;김보혜
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1161-1164
    • /
    • 1998
  • The catalytic transformation of sterically bulky tertiary stannane n-Bu3SnH by the Cp2MCl2/Red-Al (M=Ti, Zr, Hf) and M(CO)6 (M=Cr, Mo, W) catalysts yielded two kinds of catenated products: one is a cross-linked polystannane as minor product, and the other is hexabutyldistannane (n-Bu3Sn)2 as major product. The distannane was produced by simple dehydrocoupling of n-Bu3SnH, whereas the cross-linked polystannane could be obtained via redistribution/dehydrocoupling combination process of n-Bu3SnH. The redistribution/dehydrocoupling combination process may initially produce a low-molecular-weight oligostannane with partial backbone Sn-H bonds which could then undergo an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane.

Catalytic Dehydropolymerization of Di-n-butylstannane n-$Bu_2SnH_2$ by Group 4 and 6 Transition Metal Complexes

  • 우희권;박종목;송선정;양수연;김익식;김환기
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권12호
    • /
    • pp.1291-1295
    • /
    • 1997
  • The catalytic dehydrocoupling of di-n-butylstannane n-Bu2SnH2 by the Cp2MCl2/Red-Al (M = Ti, Zr, Hf) and M(CO)6/Red-Al in situ combination catalysts yielded a mixture of two kinds of catenated products: one is a cross-linked insoluble solid, and the other is a non-cross-linked soluble solid (≒Sn5) or viscous oil (≒Sn2). The soluble oligostannanes could be produced by simple dehydrocoupling of n-Bu2SnH2, whereas the insoluble polystannanes could be obtained via disproportionation/dehydrocoupling combination process of n-Bu2SnH2. The disproportionation/dehydrocoupling combination process may initially produce a low-molecular-weight oligostannane with partial backbone Sn-H bonds which could then undergo an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane.

가변 강성 엑츄에이터인 재밍 메커니즘의 힘 체인 안정성 분석 (Force Chain Stability Analysis in Jamming Mechanism for Variable Stiffness Actuator)

  • 이정수;조영준;구자춘
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.326-332
    • /
    • 2019
  • In the case of conventional soft robots, the basic stiffness is small due to the use of flexible materials. Therefore, there is a limitation that the load that can bear is limited. In order to overcome these limitations, a study on a variable stiffness method has been conducted. And it can be seen that the jamming mechanism is most effective in increasing the stiffness of the soft robot. However, the jamming mechanism as a method in which a large number of variable act together is not even theoretically analyzed, and there is no study on intrinsic principle. In this paper, a study was carried out to increase the stability of the force chain to increase the stiffness due to the jamming transition phenomenon. Particle size variables, backbone mechanisms were used to analyze the stability of the force chains. We choose a jamming mechanism as a variable stiffness method of a soft robot, and improve the effect of stiffness based on theoretical analysis, modeling FEM simulation, prototyping and experiment.

Backbone assignment and structural analysis of anti-CRISPR AcrIF7 from Pseudomonas aeruginosa prophages

  • Kim, Iktae;Suh, Jeong-Yong
    • 한국자기공명학회논문지
    • /
    • 제25권3호
    • /
    • pp.39-44
    • /
    • 2021
  • The CRISPR-Cas system provides adaptive immunity for bacteria and archaea against invading phages and foreign plasmids. In the Class 1 CRISPR-Cas system, multi-subunit Cas proteins assemble with crRNA to bind to DNA targets. To disarm the bacterial defense system, bacteriophages evolved anti-CRISPR (Acr) proteins that actively inhibit the host CRISPR-Cas function. Here we report the backbone resonance assignments of AcrIF7 protein that inhibits the type I-F CRISPR-Cas system of Pseudomonas aeruginosa using triple-resonance nuclear magnetic resonance spectroscopy. We employed various computational methods to predict the structure and binding interface of AcrIF7, and assessed the model with experimental data. AcrIF7 binds to Cas8f protein via flexible loop regions to inhibit target DNA binding, suggesting that conformational heterogeneity is important for the Cas-Acr interaction.

Robust architecture search using network adaptation

  • Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.290-294
    • /
    • 2021
  • Experts have designed popular and successful model architectures, which, however, were not the optimal option for different scenarios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a network adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than that of the State Of The Art (SOTA) NAS method.

Effect of Cation Complexation of Hindered Phenol Antioxidants on their Fragmentation in Electrospray Ionization Tandem Mass Spectrometry

  • Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.159-162
    • /
    • 2021
  • The fragmentation pattern of four hindered phenol antioxidants was investigated using ammonium and lithium ions as the additives for ionization. Due to different binding geometries and interactions, they underwent different characteristic fragmentation reactions providing useful complementary information for structural analysis of hindered phenol antioxidants. Ammonium ion adducts were fragmented successively until all t-butyl groups were lost in the form of isobutylene and allowed the estimation of the number of t-butyl groups present in the molecule. Lithium ion adducts produced fragment ions from major backbone cleavage, on the other hand, which provide more crucial information for the identification of detailed backbone structure.

Optimal Placement of CRNs in Manned/Unmanned Aerial Vehicle Cooperative Engagement System

  • Zhong, Yun;Yao, Peiyang;Wan, Lujun;Xiong, Yeming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.52-68
    • /
    • 2019
  • Aiming at the optimal placement of communication relay nodes (OPCRN) problem in manned/unmanned aerial vehicle cooperative engagement system, this paper designed a kind of fully connected broadband backbone communication topology. Firstly, problem description of OPCRN was given. Secondly, based on problem analysis, the element attributes and decision variables were defined, and a bi-level programming model including physical layer and logical layer was established. Thirdly, a hierarchical artificial bee colony (HABC) algorithm was adopted to solve the model. Finally, multiple sets of simulation experiments were carried out to prove the effectiveness and superiority of the algorithm.

Iot에 기반한 동적 텐세그리티 구조를 위한 알고리즘 개발 (Algorithm Development for Movable Tensegrity Structure by Iot)

  • 전상현;하창우;김희균;김재열
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.35-44
    • /
    • 2020
  • In the study, a shape finding procedure for the tensegrity system model inspired by the movement pattern of animal backbone was presented. The proposed system is allowing a dynamic movement by introducing the concept of "saddle" for the variable tensegrity structure. Mathematical process and an algorithm for movable tensegrity to specified points were established. Several examples have applied with in established shape finding analysis procedure. The final tensegrity structures were determined well to a object shape.

방사선 투과 이미지에서의 용접 결함 검출을 위한 딥러닝 알고리즘 비교 연구 (Comparative Study of Deep Learning Algorithm for Detection of Welding Defects in Radiographic Images)

  • 오상진;윤광호;임채옥;신성철
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.687-697
    • /
    • 2022
  • An automated system is needed for the effectiveness of non-destructive testing. In order to utilize the radiographic testing data accumulated in the film, the types of welding defects were classified into 9 and the shape of defects were analyzed. Data was preprocessed to use deep learning with high performance in image classification, and a combination of one-stage/two-stage method and convolutional neural networks/Transformer backbone was compared to confirm a model suitable for welding defect detection. The combination of two-stage, which can learn step-by-step, and deep-layered CNN backbone, showed the best performance with mean average precision 0.868.