• Title/Summary/Keyword: Back-propagation neural networks

Search Result 437, Processing Time 0.022 seconds

Production Volume Forecating of each Manufactured Goods by Neural Networks (신경회로망에 의한 제품별 생산량 예측에 관한 연구)

  • Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.298-300
    • /
    • 2001
  • This paper presents a forecasting method for production volume of each model manufactured goods by using Back-Propagation technique of Neural Networks. As the learning constant and the momentum constant are respectively 0.65 and 0.94, the learning number is the least, and the forecating accuracy is the highest. When the learning process is more than 1,000 times, the accurate forecating was possible regardless of kind of product.

  • PDF

Speeding-up for error back-propagation algorithm using micro-genetic algorithms (미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

Crack Identification Using Hybrid Neuro-Genetic Technique (인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구)

  • Suh, Myung-Won;Shim, Mun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

Hybrid position/force control of uncertain robotic systems using neural networks (신경회로망을 이용한 불확실한 로봇 시스템의 하이브리드 위치/힘 제어)

  • Kim, Seong-U;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.252-258
    • /
    • 1997
  • This paper presents neural networks for hybrid position/force control which is a type of position and force control for robot manipulators. The performance of conventional hybrid position/force control is excellent in the case of the exactly-known dynamic model of the robot, but degrades seriously as the uncertainty of the model increases. Hence, the neural network control scheme is presented here to overcome such shortcoming. The introduced neural term is designed to learn the uncertainty of the robot, and to control the robot through uncertainty compensation. Further more, the learning rule of the neural network is derived and is shown to be effective in the sense that it requires neither desired output of the network nor error back propagation through the plant. The proposed scheme is verified through the simulation of hybrid position/force control of a 6-dof robot manipulator.

  • PDF

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu (대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용)

  • Yim Sung-Bin;Kim Gyo-Won;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • This paper presents the application of a neural network for prediction of the unconfined compressive strength from physical properties and schmidt hardness number on rock samples. To investigate the suitability of this approach, the results of analysis using a neural network are compared to predictions obtained by statistical relations. The data sets containing 55 rock sample records which are composed of sandstone and shale were assembled in Daegu area. They were used to learn the neural network model with the back-propagation teaming algorithm. The rock characteristics as the teaming input of the neural network are: schmidt hardness number, specific gravity, absorption, porosity, p-wave velocity and S-wave velocity, while the corresponding unconfined compressive strength value functions as the teaming output of the neural network. A data set containing 45 test results was used to train the networks with the back-propagation teaming algorithm. Another data set of 10 test results was used to validate the generalization and prediction capabilities of the neural network.

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.

Diffusion Process Modeling for High-speed Avalanche Photodiodes using Neural Networks (고속 애벌린치 포토타이모드 제작을 위한 확산 공정의 신경망 모델링)

  • 고영돈;정지훈;윤밀구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.37-40
    • /
    • 2001
  • This paper presents the modeling methodology of Zinc diffusion process applied for high-speed avalanche photodiode fabrication using neural networks. Three process factors (sealing pressure, amount of Zn$_3$P$_2$ source per volume, and doping concentration of diffused layer) are examined by means of D-optimal design experiment. Then, diffusion rate and doping concentration of Zinc in diffused layer are characterized by a static response model generated by training fred-forward error back-propagation neural networks. It is observed that the process models developed here exhibit good agreement with experimental results.

  • PDF

Prediction Partial Molar Heat Capacity at Infinite Dilution for Aqueous Solutions of Various Polar Aromatic Compounds over a Wide Range of Conditions Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Esmailian, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1477-1484
    • /
    • 2007
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa, temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained neural networks could fairly represent dependence of the heat capacity on the molecular descriptors, temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and 4.642, respectively.