• 제목/요약/키워드: Back-propagation network

Search Result 1,107, Processing Time 0.026 seconds

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

On-Line Fault Diagnosis System using Neural Network (신경망을 이용한 실시간 고장 진단 시스템)

  • 김문성;유승선;소정훈;곽훈성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.75-84
    • /
    • 2001
  • In this paper, we propose an on-line FDD(Fault Detection and Diagnosis) system based on the three layer feed-forward neural network which is trained by the back-propagation teaming algorithm. We implement the on-line fault detection and diagnosis system by Visual C++ and Visual Basic. The proposed FDD system is applied to an air handling unit in operation. Experimental results show the high performance of our system in the task of fault detection and diagnosis.

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

Speed Control of a Direct Drive Motor Using a Neuro-Controller (신경제어기를 이용한 직접구동모터의 속도제어)

  • Cho, Jeong-Ho;Lee, Dong-Wook;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1050-1052
    • /
    • 1996
  • This paper presents a neuro-control algorithm for the speed control of a direct drive motor without the knowledge of the dynamics of the motor and the characteristics of a nonlinear load. In the field of motor control, it is not possible to directly use the back-propagation method in order to train a network since the desired output of the network is not known. Hence, we propose an extended back-propagation algorithm to force the closed loop system to give desired results. Experimental results shown that the proposed neuro-controller can reduce the unknown load effects and have the good velocity tracking capabilities.

  • PDF

Crack Identification Using Hybrid Neuro-Genetic Technique (인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구)

  • Suh, Myung-Won;Shim, Mun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

An Efficient Binarization Method for Vehicle License Plate Character Recognition

  • Yang, Xue-Ya;Kim, Kyung-Lok;Hwang, Byung-Kon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1649-1657
    • /
    • 2008
  • In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.

  • PDF

The Application of BP and RBF Neural Network Methods on Vehicle Detection in Aerial Imagery

  • Choi, Jae-Young;Jang, Hyoung-Jong;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2008
  • This paper presents an approach to Back-propagation and Radial Basis Function neural network method with various training set for automatic vehicle detection from aerial images. The initial extraction of candidate object is based on Mean-shift algorithm with symmetric property of a vehicle structure. By fusing the density and the symmetry, the method can remove the ambiguous objects and reduce the cost of processing in the next stage. To extract features from the detected object, we describe the object as a log-polar shape histogram using edge strengths of object and represent the orientation and distance from its center. The spatial histogram is used for calculating the momentum of object and compensating the direction of object. BPNN and RBFNN are applied to verify the object as a vehicle using a variety of non-car training sets. The proposed algorithm shows the results which are according to the training data. By comparing the training sets, advantages and disadvantages of them have been discussed.

Optimization of Machining Process Using an Adaptive Modeling and Genetic Algorithms(ll) - Cutting Experiment- (적응모델링과 유전알고리듬을 이용한 절삭공정의 최적화(II) - 절삭실험 -)

  • Ko, Tae Jo;Kim, Hee Sool;An, Byung Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.82-91
    • /
    • 1996
  • In this study, we put our object to carry out adaptive modeling of cutting process in turning system, and to find out the optimal cutting conditions to maximize material removal rate under some constraints. We used a back-propagation neural network to model the cutting process adaptively and a genetic algorithm to find out optimal cutting conditions. The experimental results show that a back-propagation neural network could model the cutting process effciently, and optimized cutting conditions for maximizing the material removal rate were obtained through the adaptive process model and genetic algorithms. Therefore, the proposed approach can be applied to the real machining system.

  • PDF

High Performance Speed Control of IPMSM with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and ANN(artificial neural network) control. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility md numerical processing capability. Also, this paper proposes speed control of IPMSM using LM-FNN and estimation of speed using artificial neural network controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. 'The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Analysis results to verify the effectiveness of the new hybrid intelligent control proposed in this paper.