• Title/Summary/Keyword: Back-propagation network

Search Result 1,104, Processing Time 0.031 seconds

An Weldability Estimation of Laser Welded Specimens (레이저 용접물의 용접성 평가)

  • Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.60-68
    • /
    • 2007
  • It has been conducted by laser vision sensor for weldability estimation of front-bead after doing high speed butt laser welding of any condition. It has been developed a real time GUI(Graphic User Interface) system for weldability application in the basis of texts and field qualify levels. In the reference of bead imperfections, defects absolute position and defects intensity index of front-bead in the basis of formability reference, it has been produced a weldability estimation and defects intensity index of back-bead by back propagation neural network. In the result of by comparing measuring data by laser vision sensor of back-bead and data by back propagation neural network of one, it has been shown the similar results. Finally, under knowledge of welding condition in production line, it has been conducted a weldability estimation of back-bead only in knowledge of informations of front-bead data without using laser vision sensor or welding inspection experts and furthermore it can be used data for final inspection results of back-bead.

Optimum Cooling System Design of Injection Mold using Back-Propagation Algorithm (오류역전파 알고리즘을 이용한 최적 사출설형 냉각시스템 설계)

  • Tae, J.S.;Choi, J.H.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.357-360
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. In this research, we tried the back-propagation algorithm of artificial neural network to find an optimum solution in the cooling system design of injection mold. The cooling system optimization problem that was once solved by a response surface method with 4 design variables was solved by applying the back-propagation algorithm, resulting in a solution with a sufficient accuracy. Furthermore the number of training points was much reduced by applying the fractional factorial design without losing solution accuracy.

  • PDF

Estimating Regression Function with $\varepsilon-Insensitive$ Supervised Learning Algorithm

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.477-483
    • /
    • 2004
  • One of the major paradigms for supervised learning in neural network community is back-propagation learning. The standard implementations of back-propagation learning are optimal under the assumptions of identical and independent Gaussian noise. In this paper, for regression function estimation, we introduce $\varepsilon-insensitive$ back-propagation learning algorithm, which corresponds to minimizing the least absolute error. We compare this algorithm with support vector machine(SVM), which is another $\varepsilon-insensitive$ supervised learning algorithm and has been very successful in pattern recognition and function estimation problems. For comparison, we consider a more realistic model would allow the noise variance itself to depend on the input variables.

  • PDF

A Design PID Controller by Neural Network algorithm with Momentum term in Position control system (위치제어계에서 모먼텀 항을 갖는 신경망 알고리듬 의한 PID 제어기 설계)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.380-385
    • /
    • 2001
  • In this paper, in order to get rid of danger trapped Local minimum point, disadvantage of General Back-propagation and simultaneously obtain fast teaming-speed. We propose PID Back-Propagation with Momentum Term(PID-BPMT) and Design PID Controller by Neural Network with Momentum term. Consider to apply for that Controller in position control system by driven D.C servo motor. its useful performance is verified by computer simulation

  • PDF

The Detection of Esophagitis by Using Back Propagation Network Algorithm

  • Seo, Kwang-Wook;Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1873-1880
    • /
    • 2006
  • The results of this study suggest the use of a Back Propagation Network (BPN) algorithm for the detection of esophageal erosions or abnormalities - which are the important signs of esophagitis - in the analysis of the color and textural aspects of clinical images obtained by endoscopy. The authors have investigated the optimization of the learning condition by the number of neurons in the hidden layer within the structure of the neural network. By optimizing learning parameters, we learned and have validated esophageal erosion images and/or ulcers functioning as the critical diagnostic criteria for esophagitis and associated abnormalities. Validation was established by using twenty clinical images. The success rates for detection of esophagitis during calibration and during validation were 97.91% and 96.83%, respectively.

Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves (Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구)

  • 양보석;신광재;최원호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.83-91
    • /
    • 1995
  • A neural network with one or more layers of hidden units can be trained using the well-known error back propagation algorithm. According to this algorithm, the synaptic weights of the network are updated during the training by propagating back the error between the expected output and the output provided by the network. However, the error back propagation algorithm is characterized by slow convergence and the time required for training and, in some situation, can be trapped in local minima. A theoretical formulation of a new fast learning method based on tabu search method is presented in this paper. In contrast to the conventional back propagation algorithm which is based solely on the modification of connecting weights of the network by trial and error, the present method involves the calculation of the optimum weights of neural network. The effectiveness and versatility of the present method are verified by the XOR problem. The present method excels in accuracy compared to that of the conventional method of fixed values.

  • PDF

Self-tuning Nonlinear PID Control Using Neural Network (신경망을 이용한 자기동조 비선형 PID제어)

  • Kim, Dae-Ho;Kim, Jung-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2102-2104
    • /
    • 2001
  • This paper present the strategy of self-tuning nonlinear PID control using neural network. The nonlinear PID controller consists of a conventional PID controller and a neural network compensator. The neural network is trained by back-propagation algorithm. In this paper we propose modified back-propagation algorithm to improve learning speed. The results of simulation show the usefulness of the proposed scheme.

  • PDF

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

Joint Torque Estimation of Elbow joint using Neural Network Back Propagation Theory (역전파 신경망 이론을 이용한 팔꿈치 관절의 관절토크 추정에 관한 연구)

  • Jang, Hye-Youn;Kim, Wan-Soo;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.670-677
    • /
    • 2011
  • This study is to estimate the joint torques without torque sensor using the EMG (Electromyogram) signal of agonist/antagonist muscle with Neural Network Back Propagation Algorithm during the elbow motion. Command Signal can be guessed by EMG signal. But it cannot calculate the joint torque. There are many kinds of field utilizing Back Propagation Learning Method. It is generally used as a virtual sensor estimated physical information in the system functioning through the sensor. In this study applied the algorithm to obtain the virtual senor values estimated joint torque. During various elbow movement (Biceps isometric contraction, Biceps/Triceps Concentric Contraction (isotonic), Biceps/Triceps Concentric Contraction/Eccentric Contraction (isokinetic)), exact joint torque was measured by KINCOM equipment. It is input to the (BP)algorithm with EMG signal simultaneously and have trained in a variety of situations. As a result, Only using the EMG sensor, this study distinguished a variety of elbow motion and verified a virtual torque value which is approximately(about 90%) the same as joint torque measured by KINCOM equipment.

Evaluation for Applications of the Levenberg-Marquardt Algorithm in Geotechnical Engineering (Levenberg-Marquardt 알고리즘의 지반공학 적용성 평가)

  • Kim, Youngsu;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.49-57
    • /
    • 2009
  • In this study, one of the complicated geotechnical problem, compression index was predicted by a artificial neural network method of Levenberg-Marquardt (LM) algorithm. Predicted values were compared and evaluated by the results of the Back Propagation (BP) method, which is used extensively in geotechnical engineering. Also two different results were compared with experimental values estimated by verified experimental methods in order to evaluate the accuracy of each method. The results from experimental method generally showed higher error than the results of both artificial neural network method. The predicted compression index by LM algorithm showed better comprehensive results than BP algorithm in terms of convergence, but accuracy was similar each other.

  • PDF