• Title/Summary/Keyword: Back-flow

Search Result 799, Processing Time 0.032 seconds

Simulation of Heat and Fluid Flow in the Single Screw Extruder with Coupling of the Metering Section and Die (단축 스크류 압축기에서 계량화부와 다이를 동시에 고려한 열 및 유동해석)

  • Yoon, Jung-Bae;Kwag, Dong-Seong;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.246-251
    • /
    • 2000
  • In the present study, the analysis on heat and fluid flow in the single screw extruder is carried out by simultaneously considering the metering section and the die. The finite difference method and the finite volume method are applied to the metering section and the die, respectively. The zonal method is used to couple the metering section and the die. To investigate the effect of die on the characteristics of heat and fluid flow in the single screw extruder, the pressure back flow is included in the analysis. The screw-tip rotation is also considered by employing the quasi 3-dimensional die model. The present results are compared with the numerical and experimental data available in the literatures.

  • PDF

Numerical Study on the Variation of Axial Thrust of Rotating Disc with Pump-Out Vane (POV가 부착된 회전 원판의 축추력 변화에 관한 연구)

  • Seong Seong-Mo;Kang Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.230-237
    • /
    • 2006
  • Flows in the cavity with pump out vane are calculated using the CFX-Tascflow CFD code. flow calculations are performed for different values of vane height, numbers, leakage flow rate, and rotational speed. The flow is very complex and three dimensional with strong vortex and leakage flow over the vane. The variations of pressure coefficient and K-factor with these parameters and resulting effects on the thrust and torque are studied. The present study contributes to showing the capability of flow simulation of back cavity with pump-out vane. The calculated results are good enough to be used back cavity design.

Flow Analysis of PM/NOX Reduction System for Emergency Generator (비상발전기용 PM/NOX 저감장치의 유동특성 연구)

  • Bang, Hyo-Won;Park, Gi-Young;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.163-170
    • /
    • 2021
  • Emergency generators normally use diesel engines. The generators need to conduct weekly no-load operation inspections to ensure stable performance at emergency situations. In particular, the generators with large diesel engines mainly use rectangle type filter substrates. In order to minimize hazardous emissions generated by generators, optimizing the reduction efficiency through CFD analysis of flow characteristics of PM/NOX reduction system is important. In this study, we analyzed internal flow by CFD, which is difficult to confirm by experimental method. The main factors in our numerical study are the changes of flow uniformity and back pressure. Therefore, changes in flow characteristics were studied according to urea injector locations, selective catalyst reduction (SCR) diffuser angle, and filter porosity.

Dynamic Characteristics of Pintle Nozzle about Changes of Chamber Boundary Condition (연소실 경계조건 변화에 따른 핀틀 노즐의 동특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Choi, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.22-31
    • /
    • 2018
  • In this study, numerical simulations were performed to determine the dynamic characteristics of a pintle nozzle, with changes to the chamber boundary conditions. To apply movement, to the pintle, the nozzle and pintle were created separately by an auto-grid generation program using an overset grid method. The chamber boundary conditions were selected between a constant mass-flow rate condition and a propellant burn-back condition. The pressure and thrust characteristics of the constant mass-flow rate condition were determined by changing the ratio of the mass-flow rate in the inlet. The propellant burn-back condition was considered by formulation of the combustion rate. The burn-back conditions represented nonlinear phenomena, unlike the constant mass flow rate, and a small flow rate resulted in a large change in the chamber pressure.

Computational and Experimental Simulations of the Flow Characteristics of an Aerospike Nozzle

  • Rajesh, G.;Kumar, Gyanesh;Kim, H.D.;George, Mathew
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Single Stage To Orbit (SSTO) missions which require its engines to be operated at varying back pressure conditions, use engines operate at high combustion chamber pressures (more than 100bar) with moderate area ratios (AR 70~80). This ensures that the exhaust jet flows full during most part of the operational regimes by optimal expansion at each altitude. Aero-spike nozzle is a kind of altitude adaptation nozzle where requirement of high combustion chamber pressures can be avoided as the flow is adapted to the outside conditions by the virtue of the nozzle configuration. However, the thrust prediction using the conventional thrust equations remains to be a challenge as the nozzle plume shapes vary with the back pressure conditions. In the present work, the performance evaluation of a new aero-spike nozzle is being carried out. Computational studies are carried out to predict the thrust generated by the aero-spike nozzle in varying back pressure conditions which requires the unsteady pressure boundary conditions in the computational domain. Schlieren pictures are taken to validate the computational results. It is found that the flow in the aero-spike nozzle is mainly affected by the base wall pressure variation. The aerospike nozzle exhibits maximum performance in the properly expanded flow regime due to the open wake formation.

An Analytical Study on the Gas-Solid Two Phase Flows

  • Sun, Jianguo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

Effects of a Flow Guide on the Arcing History in a Thermal Puffer Plasma Chamber (유동 가이드가 열파퍼 플라즈마 챔버의 아크현상 이력에 미치는 영향)

  • Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.832-839
    • /
    • 2007
  • The geometry and dimensions of an expansion chamber are decisive factors in thermal puffer plasma chamber designs. Because they together dominate the temperature and speed at which the cooling gas from the chamber flows back through a flow channel to the arcing zone for the successful interruption of fault currents. In this study, we calculated the flow and mass transfer driven by arc plasma, and investigated the effects of a flow guide installed inside a thermal puffer plasma chamber. It is found that the existing cold gas of the chamber mixes with hot gases entrained from the arcing zone and is subjected to compression due to pressure build-up in the chamber. The pressure build-up with the flow guide is larger than that without due to a vortex which rotates clockwise around the chamber center. By the reverse pressure gradient, the mixing gas of the chamber flows back out for cooling down the residual plasma near current zero. In the case with the flow guide, the temperature just before current zero is lower than that without, and the Cu concentration with high electrical conductivity is also less than that without the flow guide.

Development of an Evaluation Method for the Flow Rate Performance of Gas Sampling Pumps Using Adsorbent Tubes (흡착튜브를 이용한 가스상물질 채취용 펌프의 유량성능 평가방법)

  • Kim, Nam Hee;Song, Ho June;Kim, Ki Youn;Ma, Hye Lan;Yi, Gwang Yong;Jeong, Jee Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2014
  • Objectives: Flow rate stability is very important for obtaining reliable measurements. However there is no easily used method for checking whether the flow rate set at the initial stage is sustained during sampling. The purpose of this study was to develop a method to evaluate the flow rate performance of gas sampling pumps with adsorbents commonly used to sample gases. Materials and methods: We tested the back pressure of gas sampling pumps commonly used in Korea with adsorbents such as charcoal and silica tubes and attempted to discover the combination conditions of adsorbents in accordance with back pressure required by ISO standard 13137. Results: We found the combination of sampling adsorbents to be applicable to the pressure drop required by the ISO standard for evaluating flow rate stability under increasing pressure drop and long term (eight-hour) performance. Conclusions: This evaluation method of using a sampling media matrix for checking flow rate stability as proposed by this study could be a highly useful tool for determining the reliability of the performance pumps before sampling.

Development of an Evaluation Method for Flow Rate Performance of Particulate Sampling Pump using Three-pieces Cassette Holder Containing Filters (여과지가 장착된 3단 카세트를 이용한 입자상물질 채취용 펌프의 유량성능 평가방법)

  • Song, Ho-June;Kim, Nam-Hee;Kim, Ki-Youn;Ma, Hye-Lan;Lee, Kwang-Young;Jeong, Jee-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.348-355
    • /
    • 2013
  • Objectives: In working environment measurement, sampling is an important stage for obtaining reliable result as analysis. A personal air sampling pump is one of the most fundamental and important element in the work environment measurement, but it remains at the level of calibrating the flow rate of the pump before and after sampling. There is no checking whether the flow rate set at the initial stage would be hold during sampling. The purpose of this study was to develop a method to evaluate the flow rate performance of particulate sampling pump with three-pieces cassette holder containing filters commonly used to sample particulate. Materials and methods: We tested back pressure of particulate sampling pumps commonly used in Korea with three-pieces cassette holder containing various filters, and tried to find out the combination conditions of filters in accordance with back pressure required by ISO standard 13137. Results: We found out the matrix of sampling media such as three-pieces cassette holder containing filters applicable to the pressure drop required by the ISO standard for evaluating the flow rate stability under increasing pressure drop and long term(8 hour) performance. Conclusions: This evaluation method using sampling media matrix for checking flow rate stability proposed by this study could be very useful tool to find out good performance pumps before sampling.

A Study on Three-Dimensional Flow Analysis of Horizontal type Dust Collector (수평형 집진기의 3차원 유동해석에 관한 연구)

  • Won, Jong-Wun;Kim, Yong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.519-524
    • /
    • 2019
  • A horizontal dust collector is used in a large wind-volume grain dryer. In this study, Computational Fluid Dynamics (CFD) was used to analyze the flow characteristics inside the dust collector, including the effects of wear on the conical hub on the dust collection performance. Recently, a horizontal cyclone dust collector was developed with a conical hub and fixed vanes at the inlet of the dust collector to generate swirl flow to separate foreign matter from the air. The dust collector is relatively small in size and easy to install, and it has a relatively low back pressure, which does not require any additional power. However, there are problems with a back pressure problem and dust deposition that are caused by the shape of the horizontal dust collector. To solve these problems, the flow characteristics were studied with internal shapes of the dust collector using three-dimensional flow analysis.