• Title/Summary/Keyword: Back-Propagation Neural Network

Search Result 1,073, Processing Time 0.022 seconds

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

MCBP Neural Netwoek for Effcient Recognition of Tire Claddification Code (타이어 분류 코드의 효율적 인식을 위한 MCBP망)

  • Koo, Gun-Seo;O, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.465-482
    • /
    • 1997
  • In this paper, we have studied on cinstructing code-recognition shstem by neural network according to a image process taking the DOT classification code stamped on tire surface.It happened to a few problems that characters distorted in edge by diffused reflection and two adjacent characters take the same label,even very sen- sitive to illumination ofr recognition the stamped them on tire.Thus,this paper would propose the algorithm for tire code under being cinscious of these properties and prove the algorithm drrciency with a simulation.Also,we have suggerted the MCBP network composing of multi-linked recognizers of dffcient identify the DOT code being tire classification code.The MCBP network extracts the projection balue for classifying each character's rdgion after taking out the prjection of each chracter's region on X,Y axis,processes each chracters by taking 7$\times$8 normalization.We have improved error rate 3% through the MCBP network and post-process comparing the DOT code Database. This approach has a accomplished that learming time get's improvenent at 60% and recognition rate has become to 95% from 90% than BckPropagation with including post- processing it has attained greate rates of entire of tire recoggnition at 98%.

  • PDF

Elimination of Redundant Input Information and Parameters during Neural Network Training (신경망 학습 과정중 불필요한 입력 정보 및 파라미터들의 제거)

  • Won, Yong-Gwan;Park, Gwang-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • Extraction and selection of the informative features play a central role in pattern recognition. This paper describes a modified back-propagation algorithm that performs selection of the informative features and trains a neural network simultaneously. The algorithm is mainly composed of three repetitive steps : training, connection pruning, and input unit elimination. Afer initial training, the connections that have small magnitude are first pruned. Any unit that has a small number of connections to the hidden units is deleted,which is equivalent to excluding the feature corresponding to that unit.If the error increases,the network is retraned,again followed by connection pruning and input unit elimination.As a result,the algorithm selects the most im-portant features in the measurement space without a transformation to another space.Also,the selected features are the most-informative ones for the classification,because feature selection is tightly coupled with the classifi-cation performance.This algorithm helps avoid measurement of redundant or less informative features,which may be expensive.Furthermore,the final network does not include redundant parameters,i.e.,weights and biases,that may cause degradation of classification performance.In applications,the algorithm preserves the most informative features and significantly reduces the dimension of the feature vectors whiout performance degradation.

  • PDF

Classification of Schizophrenia Using an ANN and Wavelet Coefficients of Multichannel EEG (다채널 뇌파의 웨이블릿 계수와 신경망을 이용한 정신분열증의 판별)

  • 정주영;박일용;강병조;조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, a method of discriminating EEG for diagnoses of mental activity is proposed. The proposed method for classification of schizophrenia and normal EEG is based on the wavelet transform and the artificial neural network. The wavelet coefficients of $\alpha$ band, $\beta$ band, $\theta$ band, and $\delta$ band are obtained using the wavelet transform. The magnitude, mean, and variance of wavelet coefficients for each EEG band are applied to the input data of the system's ANN. The architecture of the ANN s a four layered feedforward network with two hidden layer which implements the error back propagation learning algorithm. Through the classification of schizophrenia composed of 19 ANNs corresponding to 19 channels, the classifying system show that it can classify the 100% of the normal EEG group and the 86.67% of the schizophrenia EEG group.

Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network (인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가)

  • Park, Do Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2006
  • In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network (신경망을 이용한 콘크리트 배합요소 및 압축강도 추정)

  • 김인수;이종헌;양동석;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2002
  • An artificial neural network was applied to predict compressive strength, slump value and mix proportion of a concrete. Standard mixed tables were trained and estimated, and the results were compared with those of the experiments. To consider variabilities of material properties, the standard mixed fables from two companies of Ready Mixed Concrete were used. And they were trained with the neural network. In this paper, standard back propagation network was used. The mix proportion factors such as water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate and air entraining admixture were used. For the arrangement on the approval of prediction of mix proportion factor, the standard compressive strength of $180kgf/cm^2{\sim}300kgf/cm^2$, and target slump value of 8 cm, 15 cm were used. For the arrangement on the approval of prediction of compressive strength and slump value, the standard compressive strength of $210kgf/cm^2{\sim}240kgf/cm^2$, and target slump value of 12 cm and 15 cm wore used because these ranges are most frequently used. In results, in the prediction of mix proportion factor, for all of the water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate, air entraining admixture, the predicted values and the values of standard mixed tables were almost the same within the target error of 0.10 and 0.05, regardless of two companies. And in the prediction of compressive strength and slump value, the predicted values were converged well to the values of standard mixed fables within the target error of 0.10, 0.05, 0.001. Finally artificial neural network is successfully applied to the prediction of concrete mixture and compressive strength.

An Efficient Block Segmentation and Classification Method for Document Image Analysis Using SGLDM and BP (공간의존행렬과 신경망을 이용한 문서영상의 효과적인 블록분할과 유형분류)

  • Kim, Jung-Su;Lee, Jeong-Hwan;Choe, Heung-Mun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.937-946
    • /
    • 1995
  • We proposed and efficient block segmentation and classification method for the document analysis using SGLDM(spatial gray level dependence matrix) and BP (back Propagation) neural network. Seven texture features are extracted directly from the SGLDM of each gray-level block image, and by using the nonlinear classifier of neural network BP, we can classify document blocks into 9 categories. The proposed method classifies the equation block, the table block and the flow chart block, which are mostly composed of the characters, out of the blocks that are conventionally classified as non-character blocks. By applying Sobel operator on the gray-level document image beforebinarization, we can reduce the effect of the background noises, and by using the additional horizontal-vertical smoothing as well as the vertical-horizontal smoothing of images, we can obtain an effective block segmentation that does not lead to the segmentation into small pieces. The result of experiment shows that a document can be segmented and classified into the character blocks of large fonts, small fonts, the character recognigible candidates of tables, flow charts, equations, and the non-character blocks of photos, figures, and graphs.

  • PDF

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF