• Title/Summary/Keyword: Back-Propagation

Search Result 1,472, Processing Time 0.031 seconds

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

An Efficient Block Segmentation and Classification Method for Document Image Analysis Using SGLDM and BP (공간의존행렬과 신경망을 이용한 문서영상의 효과적인 블록분할과 유형분류)

  • Kim, Jung-Su;Lee, Jeong-Hwan;Choe, Heung-Mun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.937-946
    • /
    • 1995
  • We proposed and efficient block segmentation and classification method for the document analysis using SGLDM(spatial gray level dependence matrix) and BP (back Propagation) neural network. Seven texture features are extracted directly from the SGLDM of each gray-level block image, and by using the nonlinear classifier of neural network BP, we can classify document blocks into 9 categories. The proposed method classifies the equation block, the table block and the flow chart block, which are mostly composed of the characters, out of the blocks that are conventionally classified as non-character blocks. By applying Sobel operator on the gray-level document image beforebinarization, we can reduce the effect of the background noises, and by using the additional horizontal-vertical smoothing as well as the vertical-horizontal smoothing of images, we can obtain an effective block segmentation that does not lead to the segmentation into small pieces. The result of experiment shows that a document can be segmented and classified into the character blocks of large fonts, small fonts, the character recognigible candidates of tables, flow charts, equations, and the non-character blocks of photos, figures, and graphs.

  • PDF

Developing a Neural-Based Credit Evaluation System with Noisy Data (불량 데이타를 포함한 신경망 신용 평가 시스템의 개발)

  • Kim, Jeong-Won;Choi, Jong-Uk;Choi, Hong-Yun;Chuong, Yoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.225-236
    • /
    • 1994
  • Many research result conducted by neural network researchers claimed that the degree of generalization of the neural network system is higher or at least equal to that of statistical methods. However, those successful results could be brought only if the neural network was trained by appropriately sound data, having a little of noisy data and being large enough to control noisy data. Real data used in a lot of fields, especially business fields, were not so sound that the network have frequently failed to obtain satisfactory prediction accuracy, the degree of generalization. Enhancing the degree of generalization with noisy data is discussed in this study. The suggestion, which was obtained through a series of experiments, to enhance the degree of generalization is to remove inconsistent data by checking overlapping and inconsistencies. Furthermore, the previous conclusion by other reports is also confirmed that the learning mechanism of neural network takes average value of two inconsistent data included in training set[2]. The interim results of on-going research project are reported in this paper These are ann architecture of the neural network adopted in this project and the whole idea of developing on-line credit evaluation system,being intergration of the expert(resoning)system and the neural network(learning system.Another definite result is corroborated through this study that quickprop,being agopted as a learing algorithm, also has more speedy learning process than does back propagation even in very noisy environment.

  • PDF

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Classification of Gene Data Using Membership Function and Neural Network (소속 함수와 유전자 정보의 신경망을 이용한 유전자 타입의 분류)

  • Yeom, Hae-Young;Kim, Jae-Hyup;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.4 s.304
    • /
    • pp.33-42
    • /
    • 2005
  • This paper proposes a classification method for gene expression data, using membership function and neural network. The gene expression is a process to produce mRNA and protains which generate a living body, and the gene expression data is important to find out the functions and correlations of genes. Such gene expression data can be obtained from DNA 칩 massively and quickly. However, thousands of gene expression data may not be useful until it is well organized. Therefore a classification method is necessary to find the characteristics of gene data acquired from the gene expression. In the proposed method, a set of gene data is extracted according to the fisher's criterion, because we assume that selected gene data is the well-classified data sample. However, the selected gene data does not guarantee well-classified data sample and we calculate feature values using membership function to reduce the influence of outliers in gene data. Feature vectors estimated from the selected feature values are used to train back propagation neural network. The experimental results show that the clustering performance of the proposed method has been improved compared to other existing methods in various gene expression data.

Classification of Fall in Sick Times of Liver Cirrhosis using Magnetic Resonance Image (자기공명영상을 이용한 간경변 단계별 분류에 관한 연구)

  • Park, Byung-Rae;Jeon, Gye-Rok
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.71-82
    • /
    • 2003
  • In this paper, I proposed a classifier of liver cirrhotic step using T1-weighted MRI(magnetic resonance imaging) and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were obtained in Pusan National University Hospital from June 2001 to december 2001. And the number of data was 46. We extracted liver region and nodule region from T1-weighted MR liver image. Then objective interpretation classifier of liver cirrhotic steps in T1-weighted MR liver images. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier teamed through error back-propagation algorithm. A classifying result shows that recognition rate of normal is 100%, 1type is 82.3%, 2type is 86.7%, 3type is 83.7%. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered, this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

Determination of Optimum Heating Regions for Thermal Prestressing Method Using Artificial Neural Network (인공신경망을 이용한 온도프리스트레싱 공법의 적정 가열구간 설정에 관한 연구)

  • Kim, Jun Hwan;Ahn, Jin-Hee;Kim, Kang Mi;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.695-702
    • /
    • 2007
  • The Thermal Prestressing Method for continuous composite girder bridges is a new design and construction method developed to induce initial composite stresses in the concrete slab at negative bending regions. Due to the induced initial stresses, prevention of tensile cracks at the concrete slab, reduction of steel girder section, and reduction of reinforcing bars are possible. Thus, the construction efficiency can be improved and the construction can be made more economical. The method for determining the optimum heating region of the thermal prestressing method has not been established although such method is essential for improving the efficiency of the design process. The trial-and-error method used in previous studies is far from efficient, and a more rational method for computing optimal heating region is required. In this study, an efficient method for determining the optimum heating region in using the thermal prestressing method was developed based on the neural network algorithm, which is widely adopted to pattern recognition, optimization, diagnosis, and estimation problems in various fields. Back-propagation algorithm, commonly used as a learning algorithm in neural network problems, was used for the training of the neural network. Through case studies of two-span and three-span continuous composite girder bridges using the developed procedure, the optimal heating regions were obtained.

Proposition Empirical Equations and Application of Artificial Neural Network to the Estimation of Compression Index (압축지수의 추정을 위한 인공신경망 적용과 경험식 제안)

  • 김병탁;김영수;배상근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.25-36
    • /
    • 2001
  • The purpose of this paper is to discuss the effects of soil properties such as liquid limit, water content, etc. on the compression index and to propose the empirical equation of compression index far regional clay and to verify the application Back Propagation Neural Network(BPNN). The compression index values obtained from laboratory tests are in the range of 0.01 to 3.06 for clay soils sampled in eleven regions. As the compare with the results of laboratory test and the predicted compression index value from the proposed empirical equations, the results of empirical equations including single soil parameter have a possibility to be overestimated. Also, the results of empirical equations including multiple soil parameters closed to the measured value more than that of empirical equations including single soil parameter, but the standard error for measured value obtained larger than 0.05. For these reasons, the empirical equations including single or multiple soil parameters proposed base on the results of laboratory test and the determination coefficient is up to 0.89. The result of BPNN shows that correlation coefficient and standard error between test and neural network result is larger than 0.925 and smaller than 0.0196, which means high correlativity, respectively. Especially, the estimated result by neural network, using only three parameters such as natural water content, dry unit weight and in-situ void ratio among various factors is available to the estimation of compression index and the correlation coefficient is 0.974. This result verified the possibility that if BPNN use, the compression index can be predicted by the parameters, which obtained from simplex field test.

  • PDF

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.