• Title/Summary/Keyword: Back-Projection

Search Result 200, Processing Time 0.031 seconds

Pallet Measurement Method for Automatic Pallet Engaging in Real-Time (자동 화물처리를 위한 실시간 팔레트 측정 방법)

  • Byun, Sung-Min;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • A vision-based method for positioning and orienting of pallets is presented in this paper, which guides autonomous forklifts to engage pallets automatically. The method uses a single camera mounted on the fork carriage instead of two cameras for stereo vision that is conventionally used for positioning objects in 3D space. An image back-projection technique for determining the orient of a pallet without any fiducial marks is suggested in tins paper, which projects two feature lines on the front plane of the pallet backward onto a virtual plane that can be rotated around a given axis in 3D space. We show the fact that the rotation angle of the virtual plane on which the back-projected feature lines are parallel can be used to describe the orient of the pallet front plane. The position of the pallet is determined by using ratio of the distance between the back-projected feature lines and their real distance on the pallet front plane. Through a test on real pallet images, we found that the proposed method was applicable to real environment practically in real-time.

An Optimized GPU based Filtered Backprojection method (범용 그래픽스 하드웨어 기반 여과후 역투사 최적화 기법에 관한 연구)

  • Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.436-442
    • /
    • 2009
  • Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.

  • PDF

Granular noise analysis in pixel-to-pixel mapping-based computational integral imaging (화소 대 화소 매핑 기반 컴퓨터 집적 영상에서의 그래눌라 잡음 해석)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1363-1368
    • /
    • 2011
  • This paper describes an analysis on the granular noise in pixel-to-pixel mapping-based computational integral imaging. The pixel mapping-based method provides a high-resolution reconstructed images and also its computational cost is very lower than the previous back-projection-based method. In this paper, a signal model for the pixel mapping-based method is introduced, which defines and analyzes the granular noise. Computer experiments provides the granular noise properties based on the proposed signal model. The experimental results indicates that the granular noise pattern differs from that of the back-projection based method. The results is also utilized in the pixel mapping-based method.

Particle Filtering based Object Tracking Method using Feedback and Tracking Box Correction (피드백과 박스 보정을 이용한 Particle Filtering 객체추적 방법론)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The object tracking method using particle filtering has been proved successful since it is based on the Monte Carlo simulation to estimate the posterior distribution of the state vector that is nonlinear and non-Gaussian in the real-world situation. In this paper, we present two nobel methods that can improve the performance of the object tracking algorithm based on the particle filtering. First one is the feedback method that replace the low-weighted tracking sample by the estimated state vector in the previous frame. The second one is an tracking box correction method to find an confidence interval of back projection probability on the estimated candidate object area. An sample propagation equation is also presented, which is obtained by experiments. We designed well-organized test data set which reflects various challenging circumstances, and, by using it, experimental results proved that the proposed methods improves the traditional particle filter based object tracking method.

X-Ray Tomography Based Simulation Feasibility Analysis of Nuclear Fuel Pellets (핵연료 펠릿의 X-선 단층촬영 기반 시뮬레이션 타당성 해석)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.324-329
    • /
    • 2010
  • Fuel rods using in nuclear power plants consist of uranium dioxide pellets enclosed in zirconium alloy(zircaloy) tubes. It is vitally important for the pellet surface to remain free from pits, cracks and chipping defects after it is loaded into the tubes to prevent local hot spots during reactor operation. This paper investigates the feasibility study for detecting surface flaws of pellets contained within nuclear fuel rod through X-ray tomography simulation. Reconstructed images used by parallel and fan-beam filtered back projection method were presented and confirmed the accessibility between simulation data and MPS(missing pellet surface) image data.

Object Identification and Localization for Image Recognition (이미지 인식을 위한 객체 식별 및 지역화)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.49-55
    • /
    • 2012
  • This paper proposes an efficient method of object identification and localization for image recognition. The new proposed algorithm utilizes correlogram back-projection in the YCbCr chromaticity components to handle the problem of sub-region querying. Utilizing similar spatial color information enables users to detect and locate primary location and candidate regions accurately, without the need for additional information about the number of objects. Comparing this proposed algorithm to existing methods, experimental results show that improvement of 21% was observed. These results reveal that color correlogram is markedly more effective than color histogram for this task. Main contribution of this paper is that a different way of treating color spaces and a histogram measure, which involves information on spatial color, are applied in object localization. This approach opens up new opportunities for object detection for the use in the area of interactive image and 2-D based augmented reality.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

Performance verification of Ka-Band Array Antenna using Near-Field Test Method (근접전계 시험 기법을 활용한 Ka-대역 배열안테나 성능 검증)

  • Kim, Youngwan;Kwon, Junbeom;Kang, Yeonduk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.105-111
    • /
    • 2019
  • In this paper, a performance analysis of waveguide broad-wall slot array antenna for millimeter-wave seeker in Ka-band was performed as using near-field measurement. The measurement of slot array antenna was conducted in both far-field and near-field. And the validation of near-field test in millimeter band was confirmed. It was confirmed that the beam pattern characteristics including beam width and side lobe level of the slot array antenna that performed the verification were the same. Differenced in the side lobe level of azimuth and elevation beam pattern were verified to be less than 1dB. Additionally, the new antenna aperture distribution was extracted as using back-projection method modifying the near-field data and then introduced the method conducting performance analysis of array antenna.

Truncation Artifact Reduction Using Weighted Normalization Method in Prototype R/F Chest Digital Tomosynthesis (CDT) System (프로토타입 R/F 흉부 디지털 단층영상합성장치 시스템에서 잘림 아티팩트 감소를 위한 가중 정규화 접근법에 대한 연구)

  • Son, Junyoung;Choi, Sunghoon;Lee, Donghoon;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.

LCoS projection display 제작을 위한 index matched transparent conducting oxide가 coating된 glass

  • Im, Yong-Hwan;Yu, Ha-Na;Lee, Jong-Ho;Choe, Beom-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.451-451
    • /
    • 2010
  • 최근들어 80인치 이상의 대경 고화질 display 및 휴대용 projection display 제작이 가능한 LCoS (Liquid Crystal on Silicon) display에 대한 관심이 높아지고 있다. LCoS projection display는 높은 개구율, 빠른 응답속도, 고화질, 대형 디스플레이 임에도 불구하고 낮은 제조단가 등의 여러 가지 장점을 가지고 있다. LCoS projection display의 핵심 기술로는 높은 투과도와 낮은 반사율을 갖는 유리기판, 무기 배향막 증착 기술, Si back plane과의 접합기술 등이 있다. 이 중 LCoS projection display 제작을 위한 첫 단계인 유리기판은 가시광선 영역에서 96% 이상의 높은 투과도와 3% 미만의 반사도를 요구하는 기술을 필요로 한다. 본 연구에서는 indium이 doping된 tin oxide (ITO)를 투명 전도성막으로 사용하고, $SiO_2/MgF_2$ 이중 박막을 반사방지막으로 채택하여 고투과도 및 저반사율을 갖는 유리기판 제조에 응용하였다. 먼저 15nm 두께의 ITO 박막을 DC sputtering을 이용하여 8-inch 크기의 corning1737 유리기판 상에 증착한 후, 그 반대편에 e-beam evaporation 장비를 사용하여 120nm 두께의 반사 방지막을 증착하였다. 또한 유리기판 상에 증착된 투명 전도성막의 표면개질을 위하여 Ar plasma를 이용하여 treatment를 수행하였다. 이 때 sputtering 조건은 DC power, Ar 유량 및 압력을 조절함으로서 높은 투과도를 갖는 최적의 조건을 구현하였고, e-beam evaporation을 이용한 반사방지막 증착 조건은 $SiO_2$$MgF_2$의 계면에서 빛의 반사를 최소화할 수 있는 최적의 조건을 구현하였다. 제작된 유리기판은 가시광선 영역에서 97% 이상의 투과도를 보였으며, 최대 2.8%의 반사율을 보여, LCoS display 제작에 적합함을 확인할 수 있었다. 또한 Ar plasma 처리 후 ITO 박막의 면저항 값은 $100\;{\omega}/{\Box}$, 표면 거칠기는 rms 값 기준 0.095nm, 접촉각 $20.8^{\circ}$의 특성을 보여, 타 index matched transparent conducting oxide가 coating된 유리기판에 비해 우수한 특성을 보였다.

  • PDF