• Title/Summary/Keyword: Back scattering

Search Result 168, Processing Time 0.212 seconds

Analysis of Magnetic Multi-layers by RBS and PIXE (후방산란법(RBS)/양성자 여기 X-선 방출법(PIXE)을 이용한 다층자성박막의 두께 및 조성 정량분석)

  • 송종한;김태곤;전기영;황정남;신윤하;김영만;장성호;김광윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.272-277
    • /
    • 2001
  • A spin valve structure of Ta/NiFe/CoFe/Cu/CoFe/Ru/CoFe/FeMn/Ta which has a synthetic antiferromagnet (CoFe/Ru/CoFe), was fabricated by using a magnetron sputtering system. The thickness and composition of magnetic free and pinned layers affect the magnetic properties such as exchange interaction strength of each layer and so on. Even though Rutherford Backscattering Spectrometry (RBS) has advantages of quantitative and non-destructive analysis, it is almost impossible to determine the thickness and composition of magnetic thin films using lBS because of its poor mass resolution for a higher atom number (Z>20). In this study, quantitative analysis of the element composition and thickness for the spin valve sample was performed by combining both Proton Induced X-ray Emission Spectrometry (PIXE), which is one of element specific analysis techniques, and grazing-exit RBS with a highly improved depth resolution and absolute quantitative analysis. For the quantitative analysis, standardization of PIXE was carried out with NiFe, CoFe, and FeMn layers, which are one of constituent layers of spin valve films. Through PIXE standardization and the aid of PHE experimental results of the spin valve sample, ire overlapped signal in a grazing-exit RBS spectrum were successfully resolved and the thickness of the Ru layer was determined with a resolution of ∼1 .

  • PDF

A Method for Improving Vein Recognition Performance by Illumination Normalization (조명 정규화를 통한 정맥인식 성능 향상 기법)

  • Lee, Eui Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.423-430
    • /
    • 2013
  • Recently, the personal identification technologies using vein pattern of back of the hand, palm, and finger have been developed actively because it has the advantage that the vein blood vessel in the body is impossible to damage, make a replication and forge. However, it is difficult to extract clearly the vein region from captured vein images through common image prcessing based region segmentation method, because of the light scattering and non-uniform internal tissue by skin layer and inside layer skeleton, etc. Especially, it takes a long time for processing time and makes a discontinuity of blood vessel just in a image because it has non-uniform illumination due to use a locally different adaptive threshold for the binarization of acquired finger-vein image. To solve this problem, we propose illumination normalization based fast method for extracting the finger-vein region. The proposed method has advantages compared to the previous methods as follows. Firstly, for remove a non-uniform illumination of the captured vein image, we obtain a illumination component of the captured vein image by using a low-pass filter. Secondly, by extracting the finger-vein path using one time binarization of a single threshold selection, we were able to reduce the processing time. Through experimental results, we confirmed that the accuracy of extracting the finger-vein region was increased and the processing time was shortened than prior methods.

A Study of Skin Reflectance Using Kubelka-Munk Model (Kubelka-Munk 모델을 이용한 피부 분광반사율 연구)

  • Cho, A Ra;Kim, Su Ji;Lee, Jun Bae;Sim, Geon Young;Back, Min;Cho, Eun Seul;Jang, Ji Hui;Jang, Eunseon;Kim, Youn Joon;Yoo, Kweon Jong;Han, Jeong Woo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.45-55
    • /
    • 2016
  • Light shows various optical behaviors such as reflection, absorption, and scattering on skin for individuals. In particular, reflection of light from the skin has been widely used as the brightness index of the skin of individuals through the measurement of the physical quantity of spectral reflectance. Therefore, the study of light behavior on skin would be useful for the preparation of new evaluation method in the development stage of make-up products. In this study, multi-dimensional analysis for spectral reflectance behavior of light on individual skin was performed using Kubelka-Munk model. Also, we analyzed the contribution of skin parameters such as skin thickness and hemoglobin, which could affect the spectral reflectance, using above model and literature information. Base on this, we calculated the theoretical reflectance of normal women for visual light, which showed good agreement with the measured reflectance. Our study of light propagation in skin based on Kubelka-Munk model provides useful insight for the development of personalized cosmetic in the near future.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

Holographic phase gratings in back- and frontlights for LCD's

  • Bastiaansen, C.W.M.;Heesch, C. van;Broer, D.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.421-421
    • /
    • 2006
  • The light and energy-efficiency of classical liquid crystal displays is notoriously poor due to the use of absorption-based linear polarisers and colour filters. For instance, the light efficiency of PVAL polarisers is typically between 40 and 45 % and the colour filters have a typical efficiency below 35 % which results in a total light and energy-efficiency of the display below 10 %. In the past, a variety of polarizers were developed with an enhanced efficiency in generating linearly polarized light. Typically, these polarizers are based on the polarisationselective reflection, scattering or refraction of light i.e. one polarisation direction of light is directly transmitted to the LCD/viewer and the other polarization direction of light is depolarised and recycled which results in a typical efficiency for generating linearly polarized light of 70-85 %. Also, special colour filters have been proposed based on chiral-nematic reactive mesogens which increase the efficiency of generating colour. Despite the enormous progress in this field, a need persists for improved methods for generating polarized light and colour based on low cost optical components with a high efficiency. Here, the use of holographic phase gratings is reported for the generation of polarized light and colour. The phase grating are recorded in a photopolymer which is coated onto a backor frontlight for LCDs. Typically the recording is performed in the transmisson mode or in the waveguiding mode and slanted phase gratings are generated with their refractive index modulation at an angle between 20o and 45o with the normal of the substrate. It is shown that phase gratings with a high refractive index modulation and a high efficiency can be generated by a proper selection of the photopolymer and illumination conditions. These phase gratings coupleout linearly polarized light with a high contrast (> 100) and the light is directed directly to the LCD/viewer without the need for redirection foils. Dependent on the type of phase grating, the different colours are coupled-out at a slightly different angle which potentially increases the efficiency of classical colour filters. Moreover, the phase gratings are completely transparent in direct view which opens the possibility to use them in frontlights for LCDs. Holographic polarization gratings posses a periodic pattern in the polarization state of light (and not in the intensity of light). A periodic pattern in the polarization direction of linearly polarized light is obtained upon interference of two circularly polarized laser beams. In the second part of the lecture, it is shown that these periodic polarization patterns can be recorded in a linear photo-polymerizable polymer (LPP) and that such an alignment layer induces a period rotation in the director of (reactive and non-reactive) liquid crystals. By a proper design, optical components can be produced with only first order diffraction and with a very high efficiency (>0.98). It is shown that these diffraction gratings are potentially useful in projection displays with a high brightness and energy efficiency

  • PDF

BS/channeling studies on the heteroepitaxially grown $Y_2O_3$ films on Si substrates by UHV-ICB deposition (실리콘 기판 위에 UHV-ICB 증착법으로 적층 성장된 $Y_2O_3$박막의 BS/channeling 연구)

  • 김효배;조만호;황보상우;최성창;최원국;오정아;송종한;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The crystallinity and the structure of heteroepitaxially grown $Y_2O_3$ films on the silicon substrates deposited by Ultra High Vacuum Ionized Cluster Beam(UHV-ICB) were investigated by Back-scattering Spectroscopy(BS)/channeling. The channeling minimum values, $X_{min}$, of the $Y_2O_3$ films deposited by other methods were 0.8~0.95 up to the present, which indicates amorphous or highly polycrystalline nature of the $Y_2O_3$ films. On the contrary, the channeling minimum value of heteroepitaxially grown $Y_2O_3$ films on Si(100) and Si(111) deposited by UHV-ICB are 0.28 and 0.25 respectively. These results point out fairly good crystalline quality. It is also observed that the top region of $Y_2O_3$ films have less crystalline defects than the bottom region regardless of the crystal direction of the Si substrates. The axis of $Y_2O_3$<111> epitaxially grown on Si(111) is tilt by $0.1^{\circ}$ with respect to Si<111>. That of $Y_2O_3$<110> on Si(100) is parallel to the Si<001>. The $Y_2O_3$ film on Si(100) grew with single domain structure and that on Si(111) grew with double domain structure. From the result of oxygen resonance BS/channeling, the oxygen atoms in heteroepitaxially grown $Y_2O_3$ film on Si(111) substrate have the crystallinity, but that on Si(100) shows almost channeling amorphous state.

  • PDF

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

The Influence of Arshile Gorky's & Jackson Pollock's Painting on Modern Fashion (Arshile Gorky와 Jackson Pollock의 Painting이 현대의상 직물 문양에 미친 영향)

  • Chung Heungsook Grace
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.3 s.43
    • /
    • pp.197-207
    • /
    • 1992
  • Expressionism, is as diverse as the artists invo)ved, in a very broad sense two main tendencies may be noted. The first is that of the Action painters, concerned in different ways with the gesture of the brush and the texture of the paint. It included such major artists as Arshile Gorky, Jackson Pollock, Willem De Keening, and Franz Kline. The other group consisted of the Color Field painters, concerned with the statement of an abstract sign or tranquil image in terms of a large, unified color shape or area. Here must be included Mark Rothko, Barnett Newman, Ad Rdinhardt, as well as, to a degree, Adolph Gottlieb, Robert Motherwell, and Clyf(ord Still. In this paper, 1 selected two artists Arshile Gorky and Jackson Pollock independent charac-teristics and studied the influence of their Action painting on the fabrics of modern fashion. However, it should be noted it was never the intention of the critic Harold Rosenberg, in coining this term, to imply that Action painting was a kind of athletic exercise. Nor is it true that the furious and seemingly haphazard scattering of the paint involved a completely uncontrolled, intuitive act. There is no question that, in the paintings of Jackson Pollock, Arshile Gorky and many of the other Abstract Expressionists, the element of intuition or the accidental plays a large and deliberate part; this was indeed one of the principal contributions of Abstract Expressionism which had found its own inspiration in surrealism's 'psychic automaton'. However, nothing that an experienced and accomplished artist does can be completely accidental. Aside from their intrinsic quality, the spun-out skeins of poured pigments contributed other elements that changed the course of modern painting. There was the concept of the all-over painting, the painting seemingly without beginning or end, extending to the very limits of the canvas and implying an extension even beyond. The feeling of absorption or participation is heightened by the ambiguity of the picture space. The colors and lines, although never punctur-ing deep perspective holes in the surface, still create an illusion of continuous movement, a billowing, a surging back and forth, within a limited depth. To study the influence of Abstract Expressionism on the fabric of modern fashion, 1 selected and examined four fashion magazines: Collezioni published in France, Bazaar in Italy, Gap in Japan and Vogue in the U.S.a. froim January 1989 to June 1991. As a result of this review I found that some fabrics used in modern clothing are printed in a dripping, pouring and splashing style without any meaning or form. Slides included in the presentation show that modern fabrics which are printed in such a style were influenced by Abstract Expressionism. The slides also show that these abstract prints are well suited to modern fashion design.

  • PDF

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.