• Title/Summary/Keyword: Back light

Search Result 717, Processing Time 0.031 seconds

Optimization Method for the Design of LCD Back-Light Unit (LCD Back-Light Unit 설계를 위한 최적화 기법)

  • Seo Heekyung;Ryu Yangseon;Choi Joonsoo;Hahn Kwang-Soo;Kim Seongcheol
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.3
    • /
    • pp.133-147
    • /
    • 2005
  • Various types of ray-tracing methods are used to predict the quantity measures of radiation illumination, the uniformity of illumination, radiation performance of LCD BLU(Hack-Light Unit). The uniformity of radiation illumination is one of the most important design factor of BLU and is usually controlled by the diffusive-ink pattern printed on the bottom of light-guide panel of BLU. Therefore it is desirable to produce an improved (ideally, the optimal) ink pattern to achieve the best uniformity of radiation illumination. In this paper, we applied the Welder-Mead simplex-search method among various direct search method to compute the optimal ink pattern. Direct search methods are widely used to optimize the functions which are often highly nonlinear, unpredictably discontinuous, and nondifferentiable, The ink-pattern controlling the uniformity of radiation illumination is one type of these functions. In this paper, we found that simplex search methods are well suited to computing the optimal diffusive-ink pattern. In extensive numerical testing, we have found the simplex search method to be reasonably efficient and reliable at computing the optimal diffusive-ink pattern. The result also suggests that optimization can improve the functionality of simulation tools which are used to design LCD BLU.

Spatio-Angular Consistent Edit Propagation for 4D Light Field Image (4 차원 Light Field 영상에서의 일관된 각도-공간적 편집 전파)

  • Williem, Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.180-181
    • /
    • 2015
  • In this paper, we present a consistent and efficient edit propagation method that is applied for light field data. Unlike conventional sparse edit propagation, the coherency between light field sub-aperture images is fully considered by utilizing light field consistency in the optimization framework. Instead of directly solving the optimization function on all light field sub-aperture images, the proposed optimization framework performs sparse edit propagation in the extended focus image domain. The extended focus image is the representative image that contains implicit depth information and the well-focused region of all sub-aperture images. The edit results in the extended focus image are then propagated back to each light field sub-aperture image. Experimental results on test images captured by a Lytro off-the-shelf light field camera confirm that the proposed method provides robust and consistent results of edited light field sub-aperture images.

  • PDF

A Study of Outsell Molding Technology for Thin-walled Plastic Part (박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구)

  • Lee, S.H;Ko, Y.B.;Lee, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

A Study on the Improvement of Optical Efficiency for The 2 inch LGP Considering Injection Molding Characteristics (사출성형 특성을 고려한 2인치 도광판의 광효율 향상에 관한 연구)

  • Do, Y.S.;Hwang, C.J.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.322-327
    • /
    • 2008
  • LGP is a key component of LCD back light unit because it determines brightness and sharpness of the display image. Usually, it has optical patterns fabricated on the bottom surface. These optical patterns convert point or line sources placed in the side of LGP to plane source at the top surface by changing the propagating direction of the incident light. In the present paper the LiGA-reflow method was applied to fabricate the LGP mold. Furthermore, the optical simulation considering the replication ratio of pattern height was applied to the pattern design. The optical simulation through systematic correction scheme was adopted to find the optimum distribution of pattern density. Finally, the stamper fabricated by this method was installed in the mold and LGP was produced by injection molding. As a result of luminance measurement for the final product, the average luminance and luminance uniformity was measured 3,180 nit and 84%, respectively. Consequently, the mold fabrication method using the LiGA-reflow and optical simulation(CAE) can save the expense and time compared with the existing fabrication methods(laser ablation and chemical etching).

Improvements of Color Purity in White OLED using $Zn(HPB)_2$ and Zn(HPB)q ($Zn(HPB)_2$와 Zn(HPB)q를 이용한 White OLED의 색순도 향상에 관한 연구)

  • Jang, Su-Hyun;Back, Sun-Jin;Choi, Kou-Chea;Lee, Hak-Dae;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2018-2019
    • /
    • 2007
  • Organic light emitting diodes (OLEDs) show a lot of advantages for display purposes. Because OLEDs provide white light emission with a high efficiency and stability, it is desirable to apply OLEDs as an illumination light source and back light in LCD displays. We synthesized new emissive materials, namely $Zn(HPB)_2$ and Zn(HPB)q, which have a low molecular compound and thermal stability. We studied white OLEDs using $Zn(HPB)_2$ and Zn(HPB)q. The fundamental structures of the white OLEDs were ITO / NPB (40 nm) / $Zn(HPB)_2$ (40 nm) / Zn(HPB)q (20 nm) / LiAl (120nm). As a result, we obtained a maximum luminance of $15325cd/m^2$ at a current density of $997\;mA/cm^2$. The CIE (Commission International de l'Eclairage) coordinates are (0.28, 0.35) at an applied voltage of 9.75 V.

  • PDF

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.