• Title/Summary/Keyword: Back Propagation

Search Result 1,469, Processing Time 0.027 seconds

A Study on an Image Classifier using Multi-Neural Networks (다중 신경망을 이용한 영상 분류기에 관한 연구)

  • Park, Soo-Bong;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 1995
  • In this paper, we improve an image classifier algorithm based on neural network learning. It consists of two steps. The first is input pattern generation and the second, the global neural network implementation using an improved back-propagation algorithm. The feature vector for pattern recognition consists of the codebook data obtained from self-organization feature map learning. It decreases the input neuron number as well as the computational cost. The global neural network algorithm which is used in classifier inserts a control part and an address memory part to the back-propagation algorithm to control weights and unit-offsets. The simulation results show that it does not fall into the local minima and can implement easily the large-scale neural network. And it decreases largely the learning time.

  • PDF

A Study on Performance Diagnostics of a Gas Turbine Engine Using Neural Network (신경회로망을 적용한 가스터빈 엔진의 성능진단 연구)

  • 공창덕;고성희;기자영;강명철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.267-270
    • /
    • 2003
  • An intelligent performance diagnostic computer program of a gas turbine using the NN(Neural Network) was developed. Recently on-condition performance monitoring of major gas path components using the GPA(Gas Path Analysis) method has been performed in analyzing of engine faults. However because the types and severities of engine faults are various and complex, it is not easy that all fault conditions of the engine would be monitored only by the GPA approach. Therefore in order to solve this problem, application of using the NNs for learning and diagnosis would be required. Among then, a BPN (Back Propagation Neural Network) with one hidden layer, which can use an updating learning rate, was proposed for diagnostics of PT6A-62 turboprop engine in this work.

  • PDF

Permeability Prediction of Rock Mass Using the Artifical Neural Networks (인공신경 망을 이용한 암반의 투수계수 예측)

  • Lee, In-Mo;Jo, Gye-Chun;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • A resonable and economical method which can predict permeability of rock mass in underground is needed to overcome the uncertainty of groundwater behavior. For this par pose, one prediction method of permeability has been studied. The artificial neural networks model using error back propagation algorithm, . one of the teaching techniques, is utilized for this purpose. In order to verify the applicability of this model, in-situ permeability results are simulated. The simulation results show the potentiality of utilizing the neural networks for effective permeability prediction of rock mass.

  • PDF

Improvement in the Position and Speed Control of a Dc-Servo Motor Using Back Propagation Method (역전달 학습법(BP)을 이용한 직류 서보 전동기의 위치및 속도 제어 특성개선)

  • Kim, Cheol-Am;Lee, Eun-Chul;Kim, Soo-Hyun;Kim, Nak-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.242-244
    • /
    • 1992
  • Conventionally in the industrial control, PlD controller has been used because of its robustness, and nonlinear characteristic of a system under control. Although the PlD controller produce suitable parameter of the each system and also variable of PlD controller should be changed according to environment, disturbance, load. In this paper, the convergence and learning accuracy of the back-propagation(BP) method in neural network are investigated by analyzing the reason for decelerating the convergence of BP method. and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative. The modified logistic activation function it proposed by defining the convergence factor based on the analysis and applied to the position and speed control of a DC-servo motor. This paper revealed for experimental, a neural network and a PD controller combined off-line system using developed the position and speed characteristics of a DC-servo motor.

  • PDF

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

Die Shape Design for Cold Forged Products Using the Artificial Neural Network (신경망을 이용한 냉간단조품의 금형형상 설계)

  • Kim, D.J;Kim, T.H;Kim, B.M;Choi, J.C
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.727-734
    • /
    • 1997
  • In practice, the design of forging processes is performed based on an experience-oriented technology, that is designer's experience and expensive trial and errors. Using the finite element simulation and the artificial neural network, we propose an optimal die geometry satisfying the design conditions of final product. A three-layer neural network is used and the back propagation algorithm is employed to train the network. An optimal die geometry that satisfied the same between inner extruded rib and outer extruded one is determined by applying the ability of function approximation of neural network. The neural networks may reduce the number of finite element simulation for determine the optimal die geometry of forging products and further they are usefully applied to physical modelling for the forging design.

A Comparative Study of Material Flow Stress Modeling by Artificial Neural Networks and Statistical Methods (신경망을 이용한 HSLA 강의 고온 유동응력 예측 및 통계방법과의 비교)

  • Chun, Myung-Sik;Yi, Joon-Jeong;Jalal, B.;Lenard, J.G.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.828-834
    • /
    • 1997
  • The knowledge of material stress-strain behavior is an essential requirement for design and analysis of deformation processes. Empirical stress-strain relationship and constitutive equations describing material behavior during deformation are being widely used, despite suffering some drawbacks in terms of ease of development, accuracy and speed. In the present study, back-propagation neural networks are used to model and predict the flow stresses of a HSLA steel under conditions of constant strain, strain rate and temperature. The performance of the network model is comparedto those of statistical models on rate equations. Well-trained network model provides fast and accurate results, making it superior to statistical models.

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Prediction of Etch Profile Uniformity Using Wavelet and Neural Network

  • Park, Won-Sun;Lim, Myo-Taeg;Kim, Byungwhan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.256-262
    • /
    • 2004
  • Conventionally, profile non-uniformity has been characterized by relying on approximated profile with angle or anisotropy. In this study, a new non-uniformity model for etch profile is presented by applying a discrete wavelet to the image obtained from a scanning electron microscopy (SEM). Prediction models for wavelet-transformed data are then constructed using a back-propagation neural network. The proposed method was applied to the data collected from the etching of tungsten material. Additionally, 7 experiments were conducted to obtain test data. Model performance was evaluated in terms of the average prediction accuracy (APA) and the best prediction accuracy (BPA). To take into account randomness in initial weights, two hundred models were generated for a given set of training factors. Behaviors of the APA and BPA were investigated as a function of training factors, including training tolerance, hidden neuron, initial weight distribution, and two slopes for bipolar sig-moid and linear function. For all variations in training factors, the APA was not consistent with the BPA. The prediction accuracy was optimized using three approaches, the best model based approach, the average model based approach and the combined model based approach. Despite the largest APA of the first approach, its BPA was smallest compared to the other two approaches.

Adaptive Learning Rate and Limited Error Signal to Reduce the Sensitivity of Error Back-Propagation Algorithm on the n-th Order Cross-Entropy Error (오류 역전파 알고리즘의 n차 크로스-엔트로피 오차신호에 대한 민감성 제거를 위한 가변 학습률 및 제한된 오차신호)

  • 오상훈;이수영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.67-75
    • /
    • 1998
  • Although the nCE(n-th order cross-entropy) error function resolves the incorrect saturation problem of conventional EBP(error back-propagation) algorithm, the performance of MLP's (multilayer perceptrons) trained using the nCE function depends heavily on the order of the nCE function. In this paper, we propose an adaptive learning rate to make the performance of MLP's insensitive to the order of the nCE error. Additionally, we propose a limited error signal of output node to prevent unstable learning due to the adaptive learning rate. The effectiveness of the proposed method is demonstrated in simulations of handwritten digit recognition and thyroid diagnosis tasks.

  • PDF