• Title/Summary/Keyword: Back Propagation

Search Result 1,469, Processing Time 0.03 seconds

Recipe Prediction of Colorant Proportion for Target Color Reproduction (목표색상 재현을 위한 페인트 안료 배합비율의 예측)

  • Hwang, Kyu-Suk;Park, Chang-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.438-445
    • /
    • 2008
  • For recipe prediction of colorant proportion showing nonlinear behavior, we modeled the effects of colorant proportion of basic colors on the target colors and predicted colorant proportion necessary for making target colors. First, colorant proportion of basic colors and color information indicated by the instrument was applied by a linear model and a multi-layer perceptrons model with back-propagation learning method. However, satisfactory results were not obtained because of nonlinear property of colors. Thus, in this study the neuro-fuzzy model with merit of artificial neural networks and fuzzy systems was presented. The proposed model was trained with test data and colorant proportion was predicted. The effectiveness of the proposed model was verified by evaluation of color difference(${\Delta}E$).

Implementation of Speed-Sensorless Induction Motor Drives with RLS Algorithm (RLS 알로리즘을 이용한 유도전동기의 속도 센서리스 운전)

  • 김윤호;국윤상
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.384-387
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS(Recursive Least Squares) based on Neural Network Training Algorithm. The proposed algorithm based on the RLS has just the time-varying learning rate, while the well-known back-propagation (or generalized delta rule) algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The RLS based on NN is used to adjust the motor speed so that the neural model output follows the desired trajectory. This mechanism forces the estimated speed to follow precisely the actual motor speed. In this paper, a flux estimation strategy using filter concept is discussed. The theoretical analysis and experimental results to verify the effectiveness of the proposed analysis and the proposed control strategy are described.

  • PDF

Improved Error Backpropagation Algorithm using Modified Activation Function Derivative (수정된 Activation Function Derivative를 이용한 오류 역전파 알고리즘의 개선)

  • 권희용;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.274-280
    • /
    • 1992
  • In this paper, an Improved Error Back Propagation Algorithm is introduced, which avoids Network Paralysis, one of the problems of the Error Backpropagation learning rule. For this purpose, we analyzed the reason for Network Paralysis and modified the Activation Function Derivative of the standard Error Backpropagation Algorithm which is regarded as the cause of the phenomenon. The characteristics of the modified Activation Function Derivative is analyzed. The performance of the modified Error Backpropagation Algorithm is shown to be better than that of the standard Error Back Propagation algorithm by various experiments.

  • PDF

Comparison of Color Reproduction on Scanner with Spectral Reflectance Value and XYZ using Error Back Propagation (오차 역전파 알고리즘을 이용한 분광 반사값과 XYZ 값에 대한 스캐너의 칼라 보정 비교)

  • 김홍기;강병호;한규서;윤창락;김진서;조맹섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.345-347
    • /
    • 1998
  • 스캐너를 가지고 이미지를 스캔하면 RGB 값을 얻는다. 이 RGB 값은 스캐너의 빛을 인지하는 소자들의 하드웨어적인 특성이 더해진 장치 의존적인 값이다. 그래서 RGB 값은 왜곡된 칼라 정보를 가지고 있다. 그러므로 칼라 보정을 하기 위해서는 장치 독립적이 값으로 변환해야 한다. 본 논문에서는 장치 독립적인 값을 구하기 위해서 칼라 샘플들을 XYZ로 계측한 값과 400nm에서 700nm 사이의 파장을 계측한 분광 반사값(Spectral reflectance value)을 가지고 스캐너의 칼라 보정을 구현하였다. 구현 방법으로는 신경회로망의 오차 역전파(Error Back Propagation) 알고리즘을 사용하였고 두 가지의 데이터를 가지고 실험했을 때의 결과와 장단점을 비교하였다.

  • PDF

Support Vector Bankruptcy Prediction Model with Optimal Choice of RBF Kernel Parameter Values using Grid Search (Support Vector Machine을 이용한 부도예측모형의 개발 -격자탐색을 이용한 커널 함수의 최적 모수 값 선정과 기존 부도예측모형과의 성과 비교-)

  • Min Jae H.;Lee Young-Chan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.55-74
    • /
    • 2005
  • Bankruptcy prediction has drawn a lot of research interests in previous literature, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper employs a relatively new machine learning technique, support vector machines (SVMs). to bankruptcy prediction problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, we use grid search technique using 5-fold cross-validation to find out the optimal values of the parameters of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM. we compare its performance with multiple discriminant analysis (MDA), logistic regression analysis (Logit), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.

A multi-layed neural network learning procedure and generating architecture method for improving neural network learning capability (다층신경망의 학습능력 향상을 위한 학습과정 및 구조설계)

  • 이대식;이종태
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • The well-known back-propagation algorithm for multi-layered neural network has successfully been applied to pattern c1assification problems with remarkable flexibility. Recently. the multi-layered neural network is used as a powerful data mining tool. Nevertheless, in many cases with complex boundary of classification, the successful learning is not guaranteed and the problems of long learning time and local minimum attraction restrict the field application. In this paper, an Improved learning procedure of multi-layered neural network is proposed. The procedure is based on the generalized delta rule but it is particular in the point that the architecture of network is not fixed but enlarged during learning. That is, the number of hidden nodes or hidden layers are increased to help finding the classification boundary and such procedure is controlled by entropy evaluation. The learning speed and the pattern classification performance are analyzed and compared with the back-propagation algorithm.

  • PDF

Financial Application of Time Series Prediction based on Genetic Programming

  • Yoshihara, Ikuo;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.524-524
    • /
    • 2000
  • We have been developing a method to build one-step-ahead prediction models for time series using genetic programming (GP). Our model building method consists of two stages. In the first stage, functional forms of the models are inherited from their parent models through crossover operation of GP. In the second stage, the parameters of the newborn model arc optimized based on an iterative method just like the back propagation. The proposed method has been applied to various kinds of time series problems. An application to the seismic ground motion was presented in the KACC'99, and since then the method has been improved in many aspects, for example, additions of new node functions, improvements of the node functions, and new exploitations of many kinds of mutation operators. The new ideas and trials enhance the ability to generate effective and complicated models and reduce CPU time. Today, we will present a couple of financial applications, espc:cially focusing on gold price prediction in Tokyo market.

  • PDF

Design of PID Type servo controller using Neural networks and it′s Implementation (신경회로망을 이용한 이득 자동조정 서보제어기 설계 및 구현)

  • 이상욱;김한실
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.229-229
    • /
    • 2000
  • Conventional gain-tuning methods such as Ziegler-Nickels methods, have many disadvantages that optimal control ler gain should be tuned manually. In this paper, modified PID controllers which include self-tuning characteristics are proposed. Proposed controllers automatically tune the PID gains in on-1ine using neural networks. A new learning scheme was proposed for improving learning speed in neural networks and satisfying the real time condition. In this paper, using a nonlinear mapping capability of neural networks, we derive a tuning method of PID controller based on a Back propagation(BP)method of multilayered neural networks. Simulated and experimental results show that the proposed method can give the appropriate parameters of PID controller when it is implemented to DC Motor.

  • PDF

ECG Pattern Classification Using Back-Propagation Neural Network (역전달 신경회로망을 이용한 심전도 패턴분류)

  • Lee, Je-Suk;Kwon, Hyuk-Je;Lee, Jung-Whan;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.47-50
    • /
    • 1992
  • This paper describes pattern classification algorithm of ECG using back-propagation neural network. We presents new feature extractor using second order approximating function as the input signals of neural network. We use 9 significant parameters which were extracted by feature extractor. 5 most characterized ECG signal pattern is classified accurately by neural network. We use AHA database to evaluate the performance ol the proposed pattern classification algorithm.

  • PDF

A Study on Fatigue Life of Weld Method for Excavator Bucket (굴삭기 버킷 용접부의 피로수명에 관한 연구)

  • Park, K.D.;Jung, J.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.102-109
    • /
    • 2005
  • An attachment part of the construction equipment frequently claimed from the crack occurrence that takes especially at the bucket. therefore we execute the fatigue examination and changes the welding method at the same materials. we executed a fatigue crack propagation experiment and got the conclusions at the normal temperature and Frequency 10Hz. We carried out butt welding for structure steel of SM490A and make three kinds of specimen of different weld method each. The fatigue limit of CASE 1 was determined to the low than CASE 2, CASE 3. the CASE 2 putting the interval of the 2mm creates back plate and make fatigue limit to high. Bead shapes and weld surfaces shape influence on fatigue life of materials. Specially, the crack growth becomes starting point that gap of back-plate and boundary surface of bead. It is confirmed by fracture showing on this study.

  • PDF