• Title/Summary/Keyword: Back Pressure Forging

Search Result 12, Processing Time 0.015 seconds

Development of a Closed-die Design with Backpressure to Forge Rotating Scrolls (압축기용 구동스크롤의 밀폐형 배압 금형 개발)

  • Kim, Y.B.;Jung, K.H.;Lee, S.;Kim, E.;Lee, J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.183-188
    • /
    • 2013
  • Scroll compressors are widely used in air conditioning systems and in automobiles due to their low pressure loss, minimal vibrations, and light-weight. Open-die forging with back pressure is used to forge the rotating scroll, and it requires special care since the forging die can be severely damaged at the fixed end of the spiral cavity similar to a fracture of a cantilever beam. To overcome the inevitable weakness of the forging die due to such damage, an innovative design is necessary. In this study, structural analysis using the finite element method was conducted to determine the reason for the fracture of the forging die. A novel design to avoid stress concentrations and vertical deflection, causing serious damage to the die, is suggested.

A Study to improve dimensional accuracy of forged gear (단조기어 정밀도 향상을 위한 연구)

  • Lee, Y.S.;Jung, T.W.;Lee, J.H.;Cho, J.R.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF