• Title/Summary/Keyword: Bacilus subtilis YBL-7

Search Result 2, Processing Time 0.013 seconds

Genetic Transfer of Bacillus pasteurii Urease Gene into Antagonistic Bacillus subtilis YBL-7 against Root Rotting Fungi Fusarium solani (Bacillus parteurii Urease Gene의 생물방제균 Bacillus subtilis YBL-7내에서의 발현)

  • 김용수;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.356-361
    • /
    • 1991
  • - To investigate the possibility of genetic development for a multi-purpose strain of Bacillus subtilis YBL-7 against Fusat-iurn solani causing root rot of many impotant corps, the plasmid pGU66 inserting urease gene of Bacillus pasteurii had been introduced into Bacillus subtilis YBL-7 by PEG-induced protoplast (PIP) transformation system. Protoplasts of B. subtilis YBL-7 were prepared by treating the cells with lysozyme (200 $\mu g$/ml) in hypertonic buffer (SMMP). The highest transformation frequency was achieved when cells of the strain with lysozyme at $42^{\circ}C$ for 90 minutes. Optimal transformation was obtained using polyethylene glycol (MW 4000) at final concentration of 30% (V/V). The transformation frequency was increased proportionally to 1.2 $\mu g$ of plasmid DNA. At best condition, the transformation frequency (transformants/ regenerants/$\mu g$ of DNA) for pGU66 was appoximately $4 \times 10^{-3}$. Also, the urease gene was strongly expressed in the transformants of B. subtilis YBL-7 and maintained steadily. The antifungal ability of transformant was very similar to that of B. ssubtilis YBL-7.

  • PDF

Bacterial Sporulation and germination of Biocontrol agent Bacilus subtilis YBL-7 (항진균성 길항세균 Bacillus subtilis YBL-7의 종자피막용 포자체의 생산과 발아조건)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.236-242
    • /
    • 1995
  • Biological control of soilborne plant pathogens by the addition of antagonistic microorganisms to the soil may offer a practical supplement or alternative to existing disease management strategies that depend heavily on chemical pesticides. Soil amendment with antagonistic microbes was non-effective because of high cost, low efficacy, and inconvenient usage on the treatment course. Therefore, seed coating formulation for the application of biological seed treatments has been being to apply successful disease suppression for many important crops. The objectives of this study were to investigate the optimal condition for the spore production of biocontrol agent Bacillus subtilis YBL-7 and the liquid coating formulation that contained a suspension of a proper aqueous binder, as well as a ground fine solid particulate material. The maximum yield has been obtained from 60 hrs-old culture at 30$\circ$C in spore forming (SF) medium containing 0.8% nutrient broth, 0.05% yeast extract, 10$^{-1}$ M MgCl$^{2}$, 10$^{-4}$ M MnCl$^{2}$, 10$^{-5}$ M dipicolinic acid, and pH 6.5. The optimal condition of dried spore preparation was achieved when cells of B. subtilis YBL-7 was heat-dried with 50$\circ$C for 2 hrs.

  • PDF