• Title/Summary/Keyword: Bacillus thuringiensis K1

Search Result 199, Processing Time 0.023 seconds

Isolation and Characterization of Two Mosquitocidal Bacillus thuringien- sis Strains Belonging to subsp. kurstaki and subsp. aizawai

  • Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Shim, Hee-Jin;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2001
  • Two B. thuringiensis strains, which possess mosquitocidal activities, were isolated from Korean soil samples and named K-1205-1 and K-1381-1. Serological studies indicated that K-1205-1 and K-1381-1 belonged to B. thuringiensis subsp. kurstaki (H3a3b3c) and subsp. aizawai (H7), respectively. K-1205-1 produced typical bipyramidal parasporal inclusions, but K-1381-1 produced irregular bipyramidal shape. Total plasmid DNA patterns analysis shewed that K-1205-1 and K- 1381-1 were different from their reference strains, subsp. kurstaki and subsp. aizawai, respectively, in high molecules, whereas their crystal protein patterns showed no difference. The cry gene contents of K-1205-1 and K-1381-1 were identical with those of the reference strains. Mosquitocidal activities of crystal proteins produced by K-1205-1 and K-1381-1 were significantly high by about 40-50 folds at $LC_50$ when compared to those of subsp. kurstaki and subsp. aizawai. Finally, in southern blot analysis using cry1A-type specific probe, K-1205-1 and K-1381-1 had different bands from subsp. kurstaki and subsp. aizawai, respectively. In conclusion, our results suggest that K-1205-1 and K-1381-1 appear to be new moquitocidal B. thuringiensis strains isolated from Korean soil.

  • PDF

Partial Characterization of Bacillus thuringiensis var. kurstaki Temperature-sensitive Mutants (Bacillus thringiensis var. kurstaki 감온성 돌연변이주의 일부특성)

  • 김영권;유관희;이형환;이호원
    • Korean Journal of Microbiology
    • /
    • v.23 no.3
    • /
    • pp.203-208
    • /
    • 1985
  • Partial characterization of B. thuringiensis var. kurstaki 3ab temperature-sensitive mutants was carried out through biochemical analyses, utilization tests of carbohydrate sources, antobiotic resistant test, hemolytic reaction test, growth measurement of Fructus gardenia sxtrant medium and toxicity test against mice. Six ts mutants, ts-U154, ts-U601, ts-U602, ts-U603, tsU-604, and ts-U788 could not produce urease, ts-U603 lost its motility, ts-U154 could not use salicin and cellobiose and ts-U603 not ribose. All ts mutants except ts-U154 and wild type strain were resistant to cephalothin, ampicillin, and penicillin. but ts-U154 was sensitive to the three. Four mutants, ts-U21, ts-U74, ts0U131 and ts-U154 did not form pigment colonies on the F. gardenia medium. All the mutants and wild type strain showed hemolysis reaction on the blood agar. The B. thuringiensis and mutants were not toxic to mice.

  • PDF

Selection of Crop Protectant for Friendly Environmental Control of Spodopfera exigua (Lepidoptera: Noctuidae) (파밤나방(Spodoptera exigua)의 환경친화적 방제를 위한 작물보호제의 선발)

  • Jin, Da-Yong;Cho, Min-Su;Choi, Su-Yeon;Paek, Seung-Kyoung;Kim, Jin-Su;Youn, Young-Nam;Hwang, In-Cheon;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.47 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • For the development of friendly environmental control of the beet armyworm, Spodoptera exigua that is too hard to control in the field, 25 insecticides were chosen from 58 registered to the beet armyworm, and bioassayed. There are 12 insecticides with neurotoxical activities, 10 with insect growth regulators and 3 Bacillus thuringiensis products. Among 12 insecticides with neurotoxical activities, mortality of S. exigua was 100% with emamectin benzoate (EC) and indoxacarb (WP) within 3 and 5 days after application, respectively. Otherwise, WG and SC of indoxacarb, Indoxacarb + etofenprox (WP) and pyridalyl (EW) were showed up to 91 %. Methoxyfenozide + spinosad (SC) was better than any other insect growth regulator as 100% mortality within 3 days after application. And methoxyfenozide (WP), tebufenozide (WP) and methoxyfenozide (SC) were 92% by 5 days. However, 3 kinds of B. thuringiensis products were showed under 35% mortality within 5 days from first spray.

RFLP Analysis of cry1 and cry2 Genes of Bacillus thuringiensis Isolates from India

  • Patel, Ketan D.;Ingle, Sanjay S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.729-735
    • /
    • 2012
  • The PCR-RFLP method has been useful for detection of known genes and identification of novel genes. In the present study, degenerate primers were designed from five groups of cry1 genes for PCR-RFLP analysis. Bacillus thuringiensis (Bt) isolates from different regions were evaluated for PCR amplification of various cry1 genes using newly designed primers and cry2 genes using reported primers. PCR analysis showed an abundance of cry1A genes and especially cry1Ac genes in isolates from all regions. RFLP analysis revealed the presence of multiple cry1A genes in isolates from central and southern regions. Unique digestion patterns of cry1A genes were observed in isolates from each region. Few of the isolates represented a digestion pattern of cry1A genes that did match to any of the known cry1A genes. RFLP analysis suggested an abundance of cry2Ab along with a novel cry2 gene in Bt isolates from different regions of India. Sequence analysis of the novel cry2 gene revealed 95% sequence identity to cry2Ab and cry2Ah genes. Phylogenetic analysis revealed that the novel cry2 gene could have diverged earlier than the other cry2 genes. Our results encourage finding of more diverse cry2 genes in Bt isolates. Rarefaction analysis was used to compare cry1A gene diversity in isolates from different soil types. It showed a higher degree of cry1A gene diversity in isolates from central region. In the present study, we propose the use of novel degenerate primers for cry1 genes and the PCR-RFLP method using a single enzyme to distinguish multiple cry1A and cry2 genes as well as identify novel genes.

Identification and Partial Characterization of Cerein BS229, a Bacteriocin Produced by Bacillus cereus BS229

  • Paik, Hyun-Dong;Lee, Na-Kyoung;Lee, Kwang-Ho;Hwang, Yong-Il;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.195-200
    • /
    • 2000
  • Bacillus cereus BS229 was identified as a bacteriocin producer with a bactericidal activity against Bacillus thuringiensis subsp. Thomsoni BR-40. Bacillus cereus BS229 and cerein BS229, named tentatively as the bacteriocin produced by Bacillus cereus BS229, showed a narrow spectrum of actibity against Gram-positive and Gram-negative bacteria, along with yeast and molds. Production of cerein BS229 in a 5-1 fermenter followed typical kinetics of primary metabolite synthesis. The antibacterial activity of cerein BS229 on sensitive indicator cells disappeared completely by ${\alpha}-chmotrypsin$ or proteinase K, which indicates its proteinaceous nature. Cerein BS229 seemed to be very stable throughout the pH range of 2.0 of 9.0 and it was relatively heat labile, despite the fact that bacteriocin activity was still detected after being boied for 30min. Cerein BS229 actibity has been changed with some of the organic solvents such as toluene, ethanol, and chloroform. Direct detection of cerein BS229 actibity on SDS-PAGE suggested that it had an apparent molecular mass of about 8.2 kDa.

  • PDF

Biological Control of the Mushroom Fly, Lycoriella mali, Using Bacillus thuringiensis subsp. israelensis (Bacillus thuringiensis subsp. israelensis를 이용한 느타리 재배에서 버섯파리의 생물학적 방제)

  • Moon, Byung-Ju;Lee, Su-Hee;Lim, Eun-Kyung;Kim, Tae-Sung;Kim, Hyun-Ju;Song, Ju-Hee;Kim, Ik-Soo
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.50-55
    • /
    • 2002
  • Biological control against mushroom fly, Lycoriella mali, was performed by using Bacillus thuringiensis subsp. israelensis Bti-D and Bti-U, isolated from dead mushroom fly in oyster mushroom houses. Control values of the bacterial strains Bti-D and Bti-U against L. mali in bottle culture of oyster mushroom were 74.4% and 64.2%, respectively, and the value in small tray culture were 75.8% and 56.8%, respectively. In the experiment to develop the mass, cheap media for Bti-D and Bti-U isolates, the Biji broth (bean curd residue, called Biji in Korean language) was selected as a culture medium for an inexpensive and mass cultivation by the measurement of optical density of the two bacteria grown in the different media tested. Insecticidal effect of the formulation contained different ingredients that were prepared by using the Bti-D strain cultured in the Biji broth was tested in tray and bottle culture of oyster mushroom. The WCS formulation that contained corn starch as bio-gel (86.4%) was more effective to control the mushroom fly than living cells (69.1%) in bottle culture of oyster mushroom. Moreover, insecticidal effect of the WCS formulation was improved when water of pH 8 was used for dilution of the formulation. Effect of the WCS formulation using water of pH 8 and chemicals, Zuron (dimillin) W.P. on the control of mushroom fly and the productivity of oyster mushroom was investigated in tray culture of oyster mushroom. The Zuron W.P. was more effective to control the mushroom fly than the WCS formulation. However, compared with no treatment, the productivity of the mushroom treated with the WCS formulation was improved than that of the mushroom with Zuron W.P.

Biochemicl Caracterization of Entomocidal Parasporal Crystals of Bacillus thuringiensis Strains (Bacillus thuringiensis 결정성독소의 생화학적 특성)

  • Lee, Yeong-Geun;Gang, Seok-Gwon;Kim, Sang-Hyeon
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 1989
  • The parasporal crystals of Bacillus thuringinsis subspecies kurstaki, dendrolimus, finitimus, aizawai and israelensis were compared by polyacrylamide electrophoresis, amino acid composition and immunological analysis. In the subspecies of kurstaki, dendrolimus, finitimus and aizawai, the molecular weights of main subusnits of crystal solubilized by alkaline solution were 1.3${\times}$105 and 6.5${\times}$104 while those of subsp. israelensis were 4${\times}$104 and 1,4${\times}$104. The degradation of lepidopteran toxic subspecies crystals by silkworm midgut protease showed 6.0-6.4${\times}$104 molecular weight and the pattern of degradation of subsp. israelensis crystals was similar to that of alkaline solution treatment. In the amino acid composition, aspartic acid in subsp. israelensis and glutiamic acid in the other four subspecies were the most abundant. The immunological characteristics of the crystals revealed that the antibody produced against the alkali-solubilized crystal protein of subsp. israelensis reacted with only its antigen, but the crystal antigens from the other four lepidopteran toxic subspecies did cross-react with each other as well as with their own homologous antisera.

  • PDF

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

  • Hyun, Jeongwoo;Abigail, Maria;Choo, Jin Woo;Ryu, Jin;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1708-1716
    • /
    • 2016
  • Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65℃, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45℃. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

Generation of Transgenic Plant (Nicotiana tabacum var. Petit Havana SR1) harboring Bacillus thuringiensis Insecticidal Crystal Protein Gene, cry II A (Bacillus thuringiensis 살충성 결정단백질 유전자(cry II A)의 형질전환 식물 제작)

  • 이정민;류종석;권무식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.305-311
    • /
    • 1997
  • Bacillus thuringiensis, a gram-positive soil bacterium, is characterized by its ability to produce crystalline inclusions during sporulation. The crystal proteins exhibit a highly specific insecticidal activity. An insecticidal crystal protein (ICP), Cry II A, is specifically toxic to both lepidopteran and dipteran insects. In this study, tobacco plants transformed by the cry II A gene have been generated. The Cry II A crystal protein was purified from E. coli JM103 harboring cry II A gene by differential solubility. The activated Cry II A was prepared by tryptic digestion. The purified protoxin (70 kDa) and the activated toxin (50 kDa) were analyzed by SDS-PAGE. To generate the transgenic tobacco having cry II A gene, the cry II A gene was subcloned to a plant expression vector, pSRL2, having two CaMV 35S promoters. The recombinant plasmid was transformed into tobacco (N. tabacum var. Petit Havana SR1) by Agrobacterium-mediated leaf disc transformation. Through the regeneration, six putative transgenic tobacco plants were obtained and three transformants were confirmed by Southern blot analysis. It has been found that one plant had single copy of cry II A gene, another had two copies of the gene, and the third had a truncated gene. After the immunochemical confirmation of cry II A expression in plants, the transgenic tobacco plants will be used to study the genetics of future generation with the insecticidal crystal protein gene cry II A.

  • PDF