• Title/Summary/Keyword: Bacillus subtilis Y1336

Search Result 4, Processing Time 0.023 seconds

Control Efficacy of Mixed Application of Microbial and Chemical fungicides against Powdery mildew of red-pepper (미생물 농약과 유기합성 살균제 혼용에 따른 고추 흰가루병 방제 효과)

  • Hong, Sung-Jun;Kim, Jung-Hyun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Goo, Hyung-Jin;Choi, Kwang-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • This study was conducted to reduce the using amount of chemical fungicides for the control of red-pepper powdery mildew. Effect of combined application of three microbial fungicides and six chemical fungicides for the control of red-pepper powdery mildew was examined in vitro, in pot assay and under field condition. One chemical fungicide (Azoxystrobin+Chlorothalonil) among six chemical fungicides significantly suppressed three microbial fungicides (Bacillus subtilis Y1336, Bacillus subtilis DBB1501, Bacillus subtilis QST-713) registered for the control of pepper powdery mildew in vitro. In the pot assay, two mixed application such as B. subtilis DBB1501+Trifloxystrobin, B. subtilis QST713+Trifloxystrobin among nine mixed applications of three microbial fungicides and three chemical fungicides showed the highest suppressive effect against red pepper powdery mildew. Also, suppressive effect of the mixed application of B. subtilis QST713 and Trifloxystrobin was similar to that of single application of three chemical fungicides(Myclobutanil, Trifloxystrobin, Hexaconazole). In the field test, when the microbial fungicides (B. subtilis DBB1501, B. subtilis QST713) and the chemical fungicide (Trifloxystrobin) for the control of powdery mildew of red pepper were mixed foliar sprayed four times at 7 day-intervals, the control values were in the range of 70.3% to 70.9%. On the other hand, when each of the chemical fungicide (Trifloxystrobin) was foliar sprayed four times at 7 day-intervals, the control value was 72.7%. Consequently, the mixed application of the microbial fungicides and chemical fungicides could be recommended as a one of control measures for reducing the using amount of chemical fungicides.

Evaluation of Environment-friendly Control Agents for the Management of Powdery Mildew Infection during Seedling Stage of Three Cucurbitaceae Vegetables (친환경 육묘시 세 가지 박과채소의 흰가루병에 대한 친환경 제제의 방제효과)

  • Yeo, Kyung-Hwan;Jang, Yoon Ah;Kim, Su;Um, Young Chul;Lee, Sang Gyu;Rhee, Han Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.413-420
    • /
    • 2013
  • The purpose of this study was to evaluate the control efficacy of major environment-friendly control agents against powdery mildew, as affected by the application condition such as disease-developing stage and microclimate, as compared with the efficacy of pesticides in plug seedling of three Cucurbitaceae vegetables, including cucumber, melon, and oriental melon. Single or combined application of major six environment-friendly control agents was used in the experiment: two biofungicide (Ampelomyces quisqualis 94013 and Bacillus subtilis Y1336), two plant extracts (neem oil and extracts of Rheum undulatum), and two mineral materials (wettable sulfur powder and lime bordeaux mixture). These control agents were treated to the plug seedlings for preventing powdery mildew and curative applications for managing powdery mildew. In all treatments, the disease incidence declined as daily average temperatures increased to $30^{\circ}C$ for consecutive 6~8 days with maximum temperature over $40^{\circ}C$. In preventative application, the control efficacy against powdery mildew was the highest in the treatment of wettable sulfur powder, and lowest in the B. subtilis Y1336, with values of 20~40%. In cucumber seedlings, the preventive single application of neem oil or wettable sulfur powder was more effective than curative application of fungicides, while the control efficacy of these agents was similar to those of fungicides in melon seedlings. The single application of R. undulatum extracts was also effective in preventing the disease for both cucumber and melon seedlings, showing a higher control efficacy than those of biofungicides during seedling stage. The treatment of water spray was not effective and showed a higher disease incidence than the untreated control plot in the oriental melon and melon seedlings. The curative application with environment friendly control agents, after powdery mildew was first detected, could not successfully controlled the disease at the middle stage (5~10% of disease incidence) of disease development. The curative combined application of [R. undulatum extracts (1st application) + wettable sulfur powder (2nd) + neem oil (3rd)] showed the highest control efficacy among the other treatments, with control value over 80% at the early stage (less than 1% of disease incidence) of disease development.

Cause and Control of Lettuce Powdery Mildew Caused by Podosphaera fusca (Podosphaera fusca에 의한 상추 흰가루병의 발생원인과 방제)

  • Lee, Sang-Yeob;Kim, Yong-Ki;Lee, Young-Ki
    • The Korean Journal of Mycology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2007
  • Powdery mildew caused by Podosphaera fusca is one of the most important diseases in leafy lettuce (Lactuca sativa L.). Since the disease has been a threat to safe cultivation of leafy lettuce, its control methods have to develop to produce good quality of lettuce for farmer and consumer. Occurrence of lettuce powdery mildew is increasing more and more due to continuous cultivation of lettuce all through the year, non-removal of diseased plant parts of lettuce, spray of inadequate fungicides by mistaken acknowledge of lettuce powdery mildew for lettuce downy mildew, etc. The control effect of five fungicides against lettuce powdery mildew was examined in a plastic greenhouse located in Suwon. When fungicides were sprayed three times at 10 days-intervals in the early stage of occurrence of powdery mildew, the incidence of powdery mildew in the plants treated with kresoxim-methy SC, azoxystrobin SC, Ampelomyces quisqualis AQ94013 WP, Paenibacillus polymyxa AC-1 SC and Bacillus subtilis Y 1336 WP was 0.7%, 0.7%, 26.0%, 36.7% and 42.0%, respectively, whereas the incidence of non-treated control was 55.3% on eight days after final application. Phytotoxicity of five fungicides tested was not observed in lettuce seedling plants.

Chemical and Biological Controls of Balloon Flower Stem Rots Caused by Rhizoctonia solani and Sclerotinia sclerotiorum

  • Lee, Young-Hee;Cho, Young-Son;Lee, Shin-Woo;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.156-163
    • /
    • 2012
  • Stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum have been known as devastating diseases in balloon flower plants. Antifungal activities of four fungicides, azoxystrobin, polyoxin B, trifloxystrobin and validamycin A were evaluated in vitro, showing effective suppression with mycelial growth of the fungal isolates on PDA media. Efficacies of the four fungicides were also demonstrated in stem tissues of balloon flower plants against R. solani and S. sclerotiorum. A commercially available Bacillus subtilis strain Y1336 was tested in terms of antagonistic biological control of stem rot disease of balloon flower plants. The bacterial strain revealed its antifungal activities against R. solani and S. sclerotiorum demonstrated by dual culture tests using paper discs and two plant pathogenic fungi on PDA media, as well as by plant inoculation assay, indicating that this antagonistic bacterial strain can be incorporated into disease management program for balloon flower stem rot diseases together with the four chemical fungicides.