• Title/Summary/Keyword: Bacillus subtilis WL-3

Search Result 7, Processing Time 0.02 seconds

Cloning and Strong Expression of a Bacillus subtilis WL-3 Mannanase Gene in B. subtilis

  • Yoon, Ki-Hong;Lim, Byung-Lak
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1688-1694
    • /
    • 2007
  • A gene encoding the mannanase of Bacillus subtilis WL-3, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and the nucleotide sequence of a 2.7-kb DNA fragment containing the mannanase gene was subsequently determined. The mannanase gene, designated manA, consisted of 1,080 nucleotides encoding a polypeptide of 360 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to glycosyl hydrolase family 26. The manA gene was strongly expressed in B. subtilis 168 by cloning the gene downstream of a strong B. subtilis promoter of plasmid $pJ27{\Delta}88U$. In flask cultures, the production of mannanase by recombinant B. subtilis 168 reached maximum levels of 300 units/ml and 450 units/ml in LB medium and LB medium containing 0.3% locust bean gum, respectively. Based on the zymogram ofthe mannanase, it was found that the mannanase produced by recombinant B. subtilis could be maintained stably without proteolytic degradation during the culture time.

Expression of a Bacillus subtilis Mannanase Gene in Corynebacterium lactofementum (Corynebacterium lactofermentum에서 Bacillus subtilis의 Mannanase 유전자 발현)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.405-407
    • /
    • 2009
  • A Bacillus subtilis mannanase gene was subcloned into an Escherichia coli- Corynebacterium lactofermentum shuttle vector pHE83, and the resultant plasmid pHE83M was transferred into an endogenous plasmid-free strain of C. lactofermentum. Mannanase produced by the recombinant C. lactofermentum (pHE83M) was secreted extracellulary at the level of 86%, and the remaining activity of mannanase was detected in the cell-free extract. The maximum mannanase productivity of the recombinant strain reached 8.1 unit/mL in the culture filtrate of LB medium. According to the zymogram of mannanase on SDS-PAGE, it was found that the mannanase produced by the recombinant C. lactofermentum could be maintained stably with a migration identical to the mannanase produced by the parental strain, B. subtilis WL-3.

Mannanase Production by a Soybean Isolate, Bacillus subtilis WL-7. (된장 분리균 Bacillus subtilis WL-7에 의한 Mannanase 생산)

  • 권민아;김현숙;이미성;최준호;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2003
  • A bacterium producing the extracellular mannanase was isolated from Korean soybean paste. The isolate WL-7 has been identified as Bacillus subtiis on the basis on its 16S rRNA sequence, fatty acid composition, morphology and biochemical properties. The mannanase of culture supernatant was the most active around $55^{\circ}C$ and pH $6.0^{\circ}C$, and retained 90% of its maximum activity at range of pH 5.0∼7.5 and $50∼60^{\circ}C$. The additional carbohydrates including lactose, $\alpha$-cellulose, avicel, locust bean gum (LBG), wheat bran and konjak increased dramatically the mannanase productivity of strain WL-7. Especially, the maximum mannanase productivity was reached to 224 U/ml in LB medium supplemented with both 0.5% LBG and 0.5% konjak, which was approximately 200-folds more than that in LB medium. It was suggested that the increase of mannanase production was owing to induction of mannanase biosynthesis by both LBG and konjak hydrolysates transported following initial hydrolysis by extracellular mannanase during the cell growth.

Isolation and Enzyme Production of a Mannanase-producing Strain, Bacillus sp. WL-3. (Mannanase를 생산하는 Bacillus sp. WL-3 균주의 분리와 효소 생산성)

  • 오영필;이정민;조기행;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.247-252
    • /
    • 2002
  • A bacterium producing the extracellular mannanase was isolated from Korean formented food and has been identified as a member of the genus Bacillus from the result of the phylogenic analysis based on partial 165 rRNA sequences. The isolate, named Bacillus sp. WL-3, was shown to be similar to B. subtilis strain on the basis of its biochemical properties. The mannanase of culture supematant was the most active at $55^{\circ}C$ and pH 6.0. The additional carbohydrates including u-cellulose, avicel, oat spelt xylan, guar gum and locust bean gum (LBG) increased the mannanase productivity. Especially, the maximum mannanase productivity was reached 65.5 U/ml in LB medium supplemented with 0.5% (w/v) LBG, which was 131-folds more than that in LB medium. It was sug-gested that the increase of mannanase production was owing to induction of mannanase biosynthesis by LBG hydrolysates transported following initial hydrolysis by extracellular mannanase during the cell growth. The molec-ular weight of WL-3 mannanase was estimated to approximately 38.0 kDa by zymogram on SDS-PAGE.

High-Level Expression of A Bacillus subtilis Mannanase Gene in Escherichia coli. (대장균에서 Bacillus subtilis의 Mannanase 유전자 과잉발현)

  • 권민아;손지영;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.212-217
    • /
    • 2004
  • The gene coding for mannanase from Bacillus subtilis WL-7, a number of glycosyl hydrolase family 26, was hyperexpressed in Escherichia coli. Two recombinant plasmids, pE7MAN and pENS7, were constructed by introducing the complete mannanase gene and the mature mannanase gene lacking N-terminal signal peptide region into a expression vector pET24a(+), respectively. The level of mannanase produced by E. coli BL21 (DE3) carrying pENS7, which included the mature mannanase gene, was considerably higher than that by E. coli BL21 (DE3)/pE7MAN. Almost mannanase produced by the recombinant E. coli carrying pENS7 at growth temperature of $37^{\circ}C$ existed as inactive enzyme of insoluble form. Growth at temperature below $31^{\circ}C$ increased the soluble fraction of mannanase having catalytic activity in the recombinant E. coli cells. The highest productivity of active mannanase was observed in cell-free extract of the recombinant E. coli grown at growth temperature ranging from $25^{\circ}C$ to $28^{\circ}C$, while mannanase activity per soluble protein of the cell-free extract was highest in the cells grown at $^31{\circ}C$.

Nucleotide Sequence of Cellulolytic Xylanase Gene (bglBC2) from Bacillus circulans (Bacillus circulans 유래 cellulolytic xylanase 유전자(bglBC2)의 염기서열 결정 및 분석)

  • Kim, Ji-Yeon
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • The nucleotide sequence of the cloned cellulolytic xylanase gene (bglBC2) from B. circulans ATCC21367 was determined. bglBC2 consists of an 1,224 bp open reading frame (ORF) coding for a polypeptide of 407 amino acids with a deduced molecular weight of 45 kDa. The Shine-Dalgarno (SD) sequence (5'-AAAGGAG-3') was found 9 bp upstream of the initiation codon, ATG. A promoter region corresponding closely to the B. subtilis consensus sequence (-35: TTGACA,-10: TATAAT) was detected, the putative -35 and -10 sequences of which were TTTACA and TATACT, respectively. The deduced amino acid sequence of the cellulolytic xylanase showed 97% homology with that of the alkaline $endo-\beta-1,4-glucanase$ from B. circulans KSM-N257, 75% homology with that of the $endo-\beta-1,3-1,4-glucanase$ from B. circulans WL-12, and 45% homology with that of the $endo-\beta-1,4-glucanase$ (cellulase) from Bacillus sp. KSM-330. The bglBC2 sequence was deposited in Gen-Bank under the accession number AY269256.

Isolation of Bacillus sp. Producing Poly-$\gamma$-glutamic Acid with High Efficiency and Its Characterization (고효율 Poly-$\gamma$-Glutamic Acid생산 균주의 분리 및 생산 특성)

  • You Kyung-Ok;Oh You-Na;Kim Byung-Woo;Nam Soo-Wan;Jeon Sung-Jong;Kim Dong-Eun;Kim Young-Man;Kwon Hyun-Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • A bacterium with high productivity of poly-$\gamma$-glutamic acid (PGA) was isolated from the traditional Korean seasoning, ChungKookJang. The 16s ribosomal RNA sequence of isolated strain showed 97.6, 98.9 and $90.3{\%}$ of similarity to those of Bacillus sp. WL-3, Bacillus subtilis; ENV1 and B amy-loliquefaciens (T), respectively. Accordingly, this bacterium was identified as a Bacillus sp. However, some biochemical characteristics of this strain were different from those of B. subtilis: D-xylose fermentation and glycogen utility were negative. Maximum production of PGA was achieved when it was grown aerobically in a culture medium containing glutamic acid ($3{\%}$) and fructose ($4{\%}$) as carbon sources. The volumetric yield of PGA reached up to 27 g/l in the optimum culture medium. These results suggest that the present strain can be applicable for industrial purposes such as a prototype strain for food or cosmetics industry.