• Title/Summary/Keyword: Bacillus sp. 3434BRRJ

Search Result 3, Processing Time 0.022 seconds

Evaluation of Field Applicability of Phosphorus Removal Capability and Growth of Bacillus sp. 3434 BRRJ According to Environmental Factors

  • Yoo, Jin;Kim, Deok-Hyun;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • With the population growth and industrialization, the characteristics of discharged waste water and sewage have become more diverse. The removal of phosphorus (P) in the wastewater is essential for the prevention of eutrophication in the river and stream. This study was performed in order to estimate the field application of the Bacillus sp. 3434 BRRJ. Bacillus sp. 3434 BRRJ was cultured in the raw wastewater and synthetic medium at the 5 L reactor. The best optimum conditions for P removal by Bacillus sp. 3434BRRJ in the synthetic medium at the 5 L reactor were as follows: temperature, $30^{\circ}C$; P concentration, 20 mg/L; carbon sources, glucose + acetate (1:1); oxygen concentration, alternatively anaerobic and aerobic conditions. P removal efficiency under the optimum condition was 89.4%. In case of wastewater, P removal efficiency was 95.5% under controlled at $30^{\circ}C$. Through this study we confirmed that P removal by Bacillus sp. 3434BRRJ in case of wastewater was as effective as the synthetic medium. It is considered that Bacillus sp. 3434 BRRJ can be applied to the treatment of wastewater in order to biologically remove P from the wastewater on a large scale.

Phosphorus Removal Characteristics by Bacteria Isolated from Industrial Wastewater (산업폐수로부터 분리한 인제거 미생물의 인 제거 특성)

  • Kim, Hee-Jung;Lee, Seok-Eon;Hong, Hyeon-Ki;Kim, Deok-Hyun;An, Jung-Woo;Choi, Jong-Soon;Nam, Ju-Hyun;Lee, Moon-Soon;Woo, Sun-Hee;Chung, Keun-Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Background: The removal of phosphate(P) in the wastewater is essential for the prevention of eutrophication in the river and stream. This study was initiated to evaluate the P removal by three strains of bacteria isolated from industrial wastewater. The three strains of bacteria, A1, A2, and A3, isolated were identified as Stenotrophomonas maltophilia strain CUPS 3, Rhodococcus erythropolis strain Sco-C01, Bacillus sp. 3434BRRJ, respectively. METHODS AND RESULTS: The experiments evaluating the effects of temperature, P concentration, aeration, and carbon sources on P removal by Bacillus sp. 3434BRRJ were performed in the following conditions: temperature, 15, 25 and $30^{\circ}C$; P concentrations, 20, 30, and 40 mg/L; oxygen condition, aerobic, anaerobic/aerobic conditions; carbon sources, glucose, acetate and mixture of glucose and acetate. As a result, the best optimum conditions for P removal by Bacillus sp. 3434BRRJ were as follows: temperature, $30^{\circ}C$; P concentration, 20 mg/L; carbon sources, mixture of glucose and acetate; oxygen concentration, anaerobic and aerobic conditions. The P removal efficiencies by Bacillus sp. 3434BRRJ, Stenotrophomonas maltophilia strain CUPS, and Rhodococcus erythropolis strain Sco-C01 were 99%, 50%, 20%, respectively. CONCLUSION: As a result, the best optimum conditions for P removal by Bacillus sp. 3434BRRJ selected and used in this study were as follows: temperature, $30^{\circ}C$; P concentration, 20 mg/L; carbon sources, mixture of glucose and acetate; oxygen concentration, anaerobic and aerobic conditions.

Toxic Effects of Heavy Metals on the Growth and Phosphorus Removal Efficiency of Phosphorus Accumulating Microorganisms (PAOs)

  • Sin, Da Hee;Kim, Deok Hyeon;Kim, Jong In;Lee, Moon-Soon;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.673-680
    • /
    • 2013
  • Phosphorus accumulating microorganisms (PAOs) are influenced by various environmental factors and heavy metals. This study was performed to evaluate the effects of the selected heavy metals on the growth and phosphorus removal capacity of Bacillus sp. 3434 BRRJ, Pseudomonas aerunogisa, and Bacillus Subtilis, well known as PAOs. The heavy metals used in this study included Cu, Cd, As, and Zn. The $IC_{50}$ (median inhibition concentration) values of Bacillus sp. 3434 BRRJ for the Cu, Cd, As, and Zn were 8.07 mg $L^{-1}$, 0.18 mg $L^{-1}$, 73.62 mg $L^{-1}$ and 0.25 mg $L^{-1}$, respectively. The $IC_{50}$ values of Pseudomonas aerunogisa for the Cu, Cd, As, and Zn were 4.45 mg $L^{-1}$, 0.16 mg $L^{-1}$, 18.51 mg $L^{-1}$ and 2.34 mg $L^{-1}$, respectively. The $IC_{50}$ values of Bacillus Subtilis for the Cu, Cd, As, and Zn were 3.81 mg $L^{-1}$, 0.18 mg $L^{-1}$, 11.31 mg $L^{-1}$ and 0.47 mg $L^{-1}$, respectively. The phosphorus removal efficiencies of the three bacteria, Bacillus sp. 3434 BRRJ, Pseudomonas aerunogisa, and Bacillus subtilis were 93.12%, 71.81%, and 65.31%, respectively. Based on the results of the three PAOs obtained from the study, it appears that Bacillus sp. 3434BRRJ may have the best results in terms of their growth rate and P removal efficiencies.