• Title/Summary/Keyword: Bacillus cereus TA-11

Search Result 2, Processing Time 0.015 seconds

Biosynthetic Regulation of Intracellular Invertase from Alkalophilic and Thermoplilic Bacillus cereus TA-11 (호알칼리성, 고온성 Bacillus cereus TA-11으로 생산된 세포내 Invertase의 생합성 조절)

  • Yi, Sung-Hun;Song, Jung-Eun;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.18 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • Regulation of invertase biosynthesis was studied with alkalophilic and thermophilic Bacillus cereus TA-11. Biosynthesis of invertase in Bacillus cereus TA-11 was effectively induced in the presence of 10 mM of sucrose for 180 min and 25 mM of raffinose for 90 min, respectively. Glucose repressed the invertase induction by sucrose and as late addition time of glucose, invertase formation was increased, indicating that glucose repression was occurred by inducer exclusion. Catabolite repression was not reduced by the addition of cAMP for 180 min of induction.

  • PDF

Purification and Properties of Intracellular Invertase from Alkalophilic and Thermophilic Bacillus cereus TA-11

  • Yoon, Min-Ho;Choi, Woo-Young;Kwon, Su-Jin;Yi, Sung-Hun;Lee, Dae-Hyung;Lee, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.196-201
    • /
    • 2007
  • An intracellular invertase was purified to homogeneity from the cell extract of an alkalophilic and thermophilic Bacillus sp. TA-11, which was classified as a new species belonging to Bacillus cereus based on chemotaxanomic and phylogenetic analyses. The purified enzyme with a recovery of 26.6% was determined to be a monomeric protein with a molecular weight of 23 kDa by SDS-PAGE and 26 kDa by gel filtration. The maximum enzyme activity was observed at pH 7.0 and $50^{\circ}C$, and the purified enzyme was stable at the pH range of 5.0 to 8.0 and below $60^{\circ}C$. $K_m$ and $V_{max}$ values of the enzyme for sucrose were 370 mM and 3.0 ${\mu}M$ per min, respectively. The enzyme activity was significantly inhibited by bivalent metal ions ($Hg^{2+}$, $Cd^{2+}$ and $Cu^{2+}$) and sugars (glucose and fructose).