• Title/Summary/Keyword: Bacillus cereus MH-2

Search Result 2, Processing Time 0.015 seconds

Cellular responses and proteomic analysis of hemolytic Bacillus cereus MH-2 exposed to epigallocatechin gallate (EGCG) (Epigallocatechin Gallate (EGCG)에 노출된 용혈성 Bacillus cereus MH-2의 세포 반응 및 프로테옴 분석)

  • Kim, Dong-Min;Park, Sang-Kook;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.260-268
    • /
    • 2016
  • The aim of this work was to investigate the cellular responses and proteomic analysis of Bacillus cereus MH-2 exposed to EGCG. Strain MH-2 was isolated from commercial Ssamjang and has the hemolytic activity. Survival of the MH-2 strain with time in the presence of different concentrations of EGCG under sublethal conditions was monitored. The amount of alginate from MH-2 strain decreased depending on the increasing concentrations of EGCG and increased depending on the exposure time at any particular EGCG concentration. Analysis of SDS-PAGE and Western blot using anti-DnaK and anti-GroEL revealed that two stress shock proteins, 70 kDa DnaK and 60 kDa GroEL were found to decrease in proportion to the EGCG concentration in exponentially growing cultures. Scanning electron microscopic analysis demonstrated the presence of protrusions and fused rod forms on the cells treated with EGCG. 2-DE of soluble protein fractions from MH-2 cultures showed 20 protein spots changed by EGCG exposure. These proteins involved in enterotoxins (hemolysin BL lytic component L1 and hemolysin BL-binding protein), chaperons (DnaK and GroEL), cell defense (peptidase M4 family proteins), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. These results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on B. cereus MH-2.

Identification and Characterization of Hemolytic Bacillus cereus Isolated from Commercial Ssam-jang (시판 쌈장에서 분리한 용혈성 Bacillus cereus의 동정 및 특성 조사)

  • Kim, Dong-Min;Park, Sang-Kook;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.179-186
    • /
    • 2017
  • This study was undertaken to identify and characterize hemolytic Bacillus cereus isolated from commercial ssam-jang. The physiological and biochemical properties of isolate were first examined. Using the BIOLOG system, the isolate was identified and assigned to B. cereus MH-2. Phylogenetic tree of MH-2 was plotted based on 16S rRNA sequence comparisons. Hemolytic activity was observed around wells of sheep blood agar plates seeded with MH-2 cultures; the zone of hemolysis gradually increased with increasing incubation time of the cultures. Zymographic analysis estimated the molecular weight of the presumed hemolysis-causing molecule to be about 30 kDa. Survival rates of MH-2 cells decreased with increasing NaCl concentrations in the media. The stress shock proteins (e.g., DnaK and GroEL) induced by NaCl were reduced in proportion to the NaCl concentration and exposure period to B. cereus MH-2. Analysis of SDS-PAGE and Western blot revealed that the stress shock proteins, 70-kDa DnaK and 60-kDa GroEL were decreased proportionate to the NaCl concentrations as well as exposure period in exponentially growing cultures. Scanning electron microscopy demonstrated the presence of perforations and irregular rod forms with wrinkled surfaces in cells treated with NaCl.