• Title/Summary/Keyword: BaSO4

Search Result 48, Processing Time 0.028 seconds

Insights into Systems for Iron-Sulfur Cluster Biosynthesis in Acidophilic Microorganisms

  • Myriam, Perez;Braulio, Paillavil;Javiera, Rivera-Araya;Claudia, Munoz-Villagran;Omar, Orellana;Renato, Chavez;Gloria, Levican
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1110-1119
    • /
    • 2022
  • Fe-S clusters are versatile and essential cofactors that participate in multiple and fundamental biological processes. In Escherichia coli, the biogenesis of these cofactors requires either the housekeeping Isc pathway, or the stress-induced Suf pathway which plays a general role under conditions of oxidative stress or iron limitation. In the present work, the Fe-S cluster assembly Isc and Suf systems of acidophilic Bacteria and Archaea, which thrive in highly oxidative environments, were studied. This analysis revealed that acidophilic microorganisms have a complete set of genes encoding for a single system (either Suf or Isc). In acidophilic Proteobacteria and Nitrospirae, a complete set of isc genes (iscRSUAX-hscBA-fdx), but not genes coding for the Suf system, was detected. The activity of the Isc system was studied in Leptospirillum sp. CF-1 (Nitrospirae). RT-PCR experiments showed that eight candidate genes were co-transcribed and conform the isc operon in this strain. Additionally, RT-qPCR assays showed that the expression of the iscS gene was significantly up-regulated in cells exposed to oxidative stress imposed by 260 mM Fe2(SO4)3 for 1 h or iron starvation for 3 h. The activity of cysteine desulfurase (IscS) in CF-1 cell extracts was also upregulated under such conditions. Thus, the Isc system from Leptospirillum sp. CF-1 seems to play an active role in stressful environments. These results contribute to a better understanding of the distribution and role of Fe-S cluster protein biogenesis systems in organisms that thrive in extreme environmental conditions.

Fabrication and dielectric properties of $LaAlO_3-BaZrO_3$ perovskites ($LaAlO_3-BaZrO_3$계 perovskites의 제조 및 유전특성)

  • Lee, So-Hee;Kim, Shin;Shin, Hyun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.325-325
    • /
    • 2007
  • The perovskites in the $LaAlO_3-BaZrO_3$ system (i.e., $(1-x)LaAlO_3-xBaZrO_3$ were fabricated by a solid state reaction and their dielectric properties were investigated. For the compositions of x=0.1~0.9, the mixture of $LaAlO_3$ with a rhombohedral structure and $BaZrO_3$ with a cubic was observed when the sintering was conducted at $1500^{\circ}C$, indicating that the solubility of constituent elements was very low and a narrow solid solution region might exist. The large difference of ionic radii between $La^{3+}$ ion (0.136nm, C.N.=12) and $Ba^{2+}$ ion (0.161nm) or $Al^{3+}$ ion (0.0535nm, C.N.=6) and $Zr^{4+}$ ion (0.072nm) might hinder the mutual substitution. Within the compositions of x=0~0.7, the dielectric constant of the mixture increased with the amount of $BaZrO_3$, i.e., x value, which was in good agreement with the logarithmic mixing rule (In $_{r,i}={\Sigma}v_iln\;_{r,i}$). The increase in $BaZrO_3$ doping decreased $Q{\times}f$ value significantly due to the low $Q{\times}f$ value of $BaZrO_3$ itself, a poor microstructure of the mixture with an increased grain boundary area per volume, and defects in the cation and oxygen sub-lattices which were respectively caused by the evaporation of barium during the sintering process and the substitution of Ba on La-site or Al on Zr-site.

  • PDF

Neutralization Treatment of Acid Mine Drainage Using Ca(OH)2 (소석회를 이용한 산성광산배수 중화처리)

  • Park, Young-Goo;Park, Joon-Seok;Hong, Seong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.391-396
    • /
    • 2005
  • This study was conducted to neutralize acid mine drainage (AMD) of Soo and Hambaek mines, located in Kangwon-Do Korea, using $Ca(OH)_2$. When 0.295 g $Ca(OH)_2/L$(AMD) was added to the drainage in a neutralization reactor, pH of liquid in the reactor and the effluent were maintained at 9.5 and 8.4, respectively. The pH met the required effluent standard. With 10~50% of feedback of effulent sludge to the reactor, the pH of neutralized fluid in the reactor remained nearly constant, but $SO{_4}^{-2}$ concentration in the effluent increased adversely compared to the non-return sludge case. With 30% of sludge feedback, it was possible to decrease suspended solids (SS) concentration in the effluent without a problem in Fe concentration. When 100 mL of 0.1 M $BaCl_2$ was added to 1 L of AMD treated with $Ca(OH)_2$, removal efficiency of $SO{_4}^{-2}$ increased to over 90%. Aanalyses of pH, Fe, and $SO{_4}^{-2}$ showed that the optimal results were obtained when pH of neutralizatio reactor and sludge return ratio were maintained at 9.5 and 30%. This can result in possible cost reduction of 31.4% for maintenance and 29.8% for facility construction by alternating $Ca(OH)_2$ to NaOH.

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Ionic and Elemental Compositions of PM2.5 at the 1,100 m-Highland of Mt. Hallasan in Jeju Island (한라산 1,100 m 지역의 대기 중 PM2.5에 함유된 이온 및 원소 성분의 조성특성)

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.865-875
    • /
    • 2016
  • In this study, mass concentrations and chemical compositions of $PM_{2.5}$, including water-soluble ions and elements were determined at the 1,100 m-highland of Mt. Hallasan in Jeju Island across four seasons from August 2013 to August 2014. The average mass concentration of $PM_{2.5}$ was $12.5{\pm}8.41{\mu}g/m^3$ with 45.8% of the contribution from eight water-soluble ionic species. Three ionic species ($SO{_4}^{2-}$, $NH{_4}^+$, and $NO{_3}^-$) comprised 96.2% of the total concentration of ions contained in $PM_{2.5}$ and were the dominant ions, accounting for 43.5% of the $PM_{2.5}$ mass at Mt. Hallasan. On the basis of the mass concentration level, seasonal variation, enrichment factor, and relationship among elements, we can presume that Mg, K, Ca, Mn, Fe, Co, Sr, Ba, Nd, and Dy originated mainly from crust or soil and that V, Cr, Ni, Cu, Zn, As, Cd, and Pb were significantly enriched in $PM_{2.5}$ owing to the effects of the anthropogenic emissions. These results and the local distribution of emission sources and topographic characteristics near this sampling site suggest that the compositions of $PM_{2.5}$ collected at the 1100 m-highland of Mt. Hallasan were largely influenced by inflow from outside of Jeju Island.

Determination of Hydroperoxyl/superoxide Anion Radical (HO2·/O2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method

  • Kwon, Bum-Gun;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1785-1790
    • /
    • 2006
  • A novel kinetic method for determination of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition in water is described. In this study, potential interferences of $O_3$ and the hydroxyl radicals, $^{\cdot}OH_{(O3)}$, are suppressed by $HSO_3{^-}/SO_3{^{2-}}$. $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ formed in ozone decomposition reduces $Fe^{3+}$-EDTA into $Fe^{2+}$-EDTA and subsequently the well-known Fenton-like (FL) reaction of $H_2O_2$ and $Fe^{2+}$-EDTA produces the hydroxyl radicals, $^{\cdot}OH_{(FL)}$. Benzoic acid (BA) scavenges $^{\cdot}OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection (${\lambda}_{ex}=320nm$ and ${\lambda}_{ex}=400nm$). The concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life ($t_{1/2}$). The steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ is proportional to the $O_3$ concentration at a given pH. However, the steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of $O_2{^{{\cdot}-}}$ by $O_3$ at higher pH conditions. The steady-state concentrations of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ are in the range of $2.49({\pm}0.10){\times}10^{-9}M(pH=4.17){\sim}3.01({\pm}0.07){\times}10^{-10}M(pH=7.59)$ at $[O_3]_o=60{\mu}M$.

Study on Chemical Characterization of PM2.5 based on Long-term Database (1990 ~ 2012) and Development of Chemical Species Profiles During Haze Days and Asian Dust Days in Yongin-Suwon Area (장기간 (1990 ~ 2012) 측정자료를 이용한 용인-수원지역에서의 PM2.5의 화학적 특성연구 및 헤이즈와 황사 현상 시 화학성분별 질량분율표의 개발)

  • Lim, Hyoji;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.223-238
    • /
    • 2015
  • The $PM_{2.1}$ was collected by LVCI (low volume cascade impactor) during Group-A Period (September 1990 to December 2012) and the $PM_{2.5}$ was collected by HVAS (high volume air sampler) during Group-B Period (September 2009 to April 2012) at Kyung Hee University, Global Campus located on the boarder of Yongin and Suwon. The 8 water-soluble ions ($Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $ NO_3{^-}$, and $SO_4{^{2-}}$) were analyzed by IC, and the 14 inorganic elements (Al, Mn, Si, Fe, Cu, Pb, Cr, Ni, V, Cd, Ba, Zn, Ti, Ag) were analyzed by XRF and ICP-AES after performing proper pre-treatments of each sample filter. The average total mass fractions of $SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$+ to $PM_{2.5}$ samples during Group-B Period were 0.39 in normal days, 0.44 in haze days, and 0.27 in Asian dust days, respectively; however, the average total mass fractions of Al, Fe, and Si to $PM_{2.5}$ mass were 0.043 in normal days, 0.021 in haze days, and 0.036 in Asian dust days, respectively. Especially the concentration of Pb was significantly decreased during Group-B Period rather than during Group-A Period, while Cr and Ni was increased during Group-B Period. In this study, we intensively compared the annual and seasonal patterns of major chemical species among normal days, haze days, and Asian dust days. Further we developed mass fraction profiles by collecting episode cases of haze days and Asian dust days, which were consisting of 22 chemical species. Those profiles are considered to be useful when applying various receptor models and establishing air quality management plans near future.

Identification of Atmospheric PM10 Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Area by Using PMF (PMF모델을 이용한 용인.수원 경계지역에서 PM10 오염원의 확인과 상대적 기여도의 추정)

  • Lee, Hyung-Woo;Lee, Tae-Jung;Yang, Sung-Su;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.439-454
    • /
    • 2008
  • The purpose of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions to the study area, based on the analysis of the $PM_{10}$ mass concentration and the associated inorganic elements, ions, and total carbon. The contribution of $PM_{10}$ sources was estimated by applying a receptor method because identifying air emission sources were effective way to control the ambient air quality. $PM_{10}$ particles were collected from May to November 2007 in the Yongin-Suwon bordering area. $PM_{10}$ samples were collected on quartz filters by a $PM_{10}$ high-volume air sampler. The inorganic elements (Al, Mn, V, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Ba, Ti and Ag) were analyzed by an ICP-AES after proper pre-treatments of each sample. The ionic components of these $PM_{10}$ samples ($Cl^_$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) were analyzed by an IC. The carbon components (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) were also analyzed by DRI/OGC analyzer. Source apportionment of $PM_{10}$ was performed using a positive matrix factorization (PMF) model. After performing PMF modeling, a total of 8 sources were identified and their contribution were estimated. Contributions from each emission source were as follows: 13.8% from oil combustion and industrial related source, 25.4% from soil source, 22.1% from secondary sulfate, 12.3% from secondary nitrate, 17.7% from auto emission including diesel (12.1%) and gasoline (5.6%), 3.1% from waste incineration and 5.6% from Na-rich source. This study provides information on the major sources affecting air quality in the receptor site, and therefore it will help us maintain and manage the ambient air quality in the Yongin-Suwon bordering area by establishing reliable control strategies for the related sources.

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.