• Title/Summary/Keyword: BTCA(Butanetetracarboxylic acid)

Search Result 18, Processing Time 0.019 seconds

A Study on the Durable Press Finishing of Cotton Fiber Treated with Polycarboxylic Acid (폴리카르복시 산 처리 면섬유의 DP가공에 관한 연구)

  • 이찬민;최철민
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.58-67
    • /
    • 1997
  • PTCA(1,2,3-propanetricarboxylic acid) and BTCA(1,2,3-butanetetracarboxylic acid) are selected as new nonformaldehyde agents for ester crosslinking of cotton cellulose to replace the traditional DMDHEU reagent. A goal of this research is to propose unknown ester mechanism of cotton cellulose by PTCA or BTCA using crystal structure model suggested by Meyer and Takahashi. In pursuit of these goals, we have treated 100% cotton broad cloth with PTCA or BTCA and different catalysts. They were used with $NaH_2PO_2,\;NaH_2PO_4,\;Na_2HPO_4,\;NaH_2PO_2,\;Na_3PO_4,$ catalysts to produce nonformaldehyde fabric finishes. Treatments were applied to all cotton fabrics using a pad-dry -cure process. The esterfication of cotton treated with BTCA or PTCA was investigated using Fourier transform infrared(FT-IR) spectra and the breaking strength, abrasion retention and discoloration properties were determined to prove the durable finished fabrics. Patterns with respect to abrasion resistance were more complex. Because PTCA and BTCA add-ons were comparable, the data suggest that the more effective catalysts, $NaH_2PO_2$ and mixed phosphate $NaH_2PO_2/NaH_2PO_4$) are effecting either a great number of crosslinks in the cotton or producing crosslinks that differ in actual structure.

  • PDF

Hydrolysis of the Ester Crosslinking on Cotton Fabric Treated with Polycarboxylic Acid(I) (polycarboxylic acid 처리면포의 Ester 가교결합의 가수분해 (I))

  • 강인숙;배현숙
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2003
  • In this research, we applied FT-IR spectroscopy to study the hydrolysis of the ester-crosslinking formed by various polycarboxylic acids on the cotton fabric. We observed the following; (1) the ester-crosslinking is less durable to hydrolysis than ether-crosslinking under all conditions; (2) the ester-crosslinking formed by polycarboxylic acids having more than three carboxyl groups, such as butanetetracarboxylic acid (BTCA), are substantially more durable to hydrolysis than the acids having two or three carboxyl groups, such as maleic and citric acid; (3) alkaline conditions drastically accelerate the hydrolysis of both urea- and ester-crosslinking; and (4) the ester-crosslinking formed by poly(maleic acid) is more resistant to hydrolysis at alkaline conditions than BTCA. (5) polycarboxylic acid molecules were removed from the fabric at same rate as the hydrolysis of the ester linkage. FT-IR spectroscopy has proved to be a useful analytical technique for evaluating the hydrolysis of the crosslinked cotton fabric.

Physical Properties of Cotton Fabric Treated with BTCA and P olyalkyleneoxide-modified amino-functional silicone (BTCA와 실리콘 처리 면직물의 물리적 성질)

  • 남승현;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.4
    • /
    • pp.525-534
    • /
    • 1998
  • Cotton fabrics were finished with mixture of BTCA(1,2,3,4,-butanetetracarboxylic acid) and polyalkyleneoxide-modified amino-functional silicone by pad-dry-cure process to achieve better DP performance with a higher retention of physical properties as compared to those of finished with BTCA alone. The results indicated that BTCA improved the wrinkle recovery but reduced significantly the tensile and tear strength of the treated fabrics. Whereas silicone imparted a lower wrinkle recovery, a lower loss of tensile strength than BTCA, in addition improved considerably the tear strength owing to reduction in inter-fiber and/or inter-yarn frictional forces. The concentration and curing temperature needed to enhance physical properties were as follows; for BTCA treatments 6%, at 18$0^{\circ}C$, for silicone treatments 1% at 14$0^{\circ}C$. This optimum concentration of silicone was observed by using the mixture of BTCA and silicone. The wrinkle recovery and DP rating of cotton fabrics treated with mixture of 4% BTCA and 1% silicone at a curing temperature of 17$0^{\circ}C$ was similar to those of treated with 6% BTCA at a curing temperature of 18$0^{\circ}C$, and other performance properties observed were; an increase in tensile strength, extension, toughness, abrasion resistance and moisture regain due to the reduction of BTCA concentration and curing temperature, futhermore an improvement in bending and surface properties due to the lubricating effect of silicone. On the other hand 1% aqueous silicone solution showed the lowest surface tension. Such nonionic surface activity resulted in a more uniform and rapid deposition of BTCA on the fiber or fabric.

  • PDF

Effect of Pre-treatment with BTCA on Lightfastness of Cotton Fabric dyed with Combination of Safflower red / Amur Cork Tree (BTCA 전처리가 홍화/황벽 혼합 면염색물의 일광견뢰성에 미치는 영향)

  • Jeong, Sun-Young;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.1051-1057
    • /
    • 2008
  • Safflower red and Amur Cork Tree dyes have used for dyeing on cotton fabrics largely. But they have low degree of lightfastness, So this study investigated the effect of BTCA pre-treatment on lightfastness of cotton fabrics dyed with Safflower red and Amur Cork Tree. The result is as the following; By FT-IR spectra, crosslingking was proved in cotton fabric pre treated with BTCA. K/S value of Safflower red dyed cotton fabric pretreated with BTCA was much more decreased than untreated cotton fabric with BTCA. It showed that the hue of the Safflower red dyed cotton fabric changed from reddish purple to red. However, K/S value of Amur Cork Tree dyed cotton fabric pre treated with BTCA was much more increased than untreated cotton fabric with BTCA. It showed that the hue of the Amur Cork Tree dyed cotton fabric changed from green yellow to yellow. For K/S value of Combination dyed cotton fabric pre treated with BTCA, Safflower red color was much more decreased than untreated cotton fabric. But Amur Cork Tree color was much more increased than untreated cotton fabric. It changed from reddish purple, red, yellowe red, to yellow in hue. ${{\Delta}E^*}_{ab}$ of Combination dyed cotton fabric in 40 hours irradiation was 15.7, however ${{\Delta}E^*}_{ab}$ of Combination dyed cotton fabric treated with 2% BTCA was 8.0, and that treated with 3% BTCA was 9.8. So, pre-treatment with BTCA to combination dyed cotton fabric with Safflower red and Amur Cork Tree showed more effective improvement of Lightfastness than untreated cotton fabric with BTCA.

가교방법이 PVA 필름의 겔 특성에 미치는 영향

  • Gu, Gwang-Hoe;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.11a
    • /
    • pp.15-16
    • /
    • 2009
  • Poly(vinyl alcohol) was crosslinked by UV irradiation in the presence of water soluble photoinitiators. The crosslinking of PVA films with 1,2,3,4-Butanetetracarboxylic acid(BTCA) and sodium phosphinate monohydrate(SPM) was also achieved via thermal curing. Different factors in the crosslinking including thermal and radiation methods were studied. Gel fraction of PVA films increased with increasing photoinitiator concentration. The maximum gel fraction on the crosslinking method was reached about 81%. The glass transition and maximum decomposition temperature improved by both thermal and radiation crosslinking.

  • PDF

A Study on the Dyeing Property of Polycarboxylic Acid Treated Cotton Fabrics with Chelidonium majus Extracts (애기똥풀 추출액에 대한 Polycarboxylic Acid 처리 면직물의 염색특성 연구)

  • Choi, Kyung-Eun;Kang, Sung-Il;Rhie, Jeon-Sook;Chung, Yong-Sik
    • Korean Journal of Human Ecology
    • /
    • v.9 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The main colorant of Chelidonium majus extracts is a berberine which shows relatively good dyeability onto silk fabrics in the appropriate dyeing conditions without mordant, But cotton fabrics are difficult to dye with berberine because of the low substantivity the cationic to cellulosic fibers. we treated cotton fabrics using three types of polycarboxylic acid, DL-malic acid, citric acid, 1,2,3,4-butanetetracarboxylic acid(BTCA) to increase dyeability of Chelidonium majus extracts onto cotton fabrics. As a result the cotton fabrics treated with polycarboxylic acid could be dyed with Chelidonium majus extracts and also showed yellow vividly. The dye uptake were increased with increasing the number of carboxy groups. And so dye uptake resulted the largest in the BTCA solutions which have four carboxylic groups in the molecular unit. The optimal dyeing temperature a of Chelidonium majus extracts onto polycarboxylic acid treated cotton fabrics were $60^{\circ}C$. The dye equilibrium was reached 20 minutes after dyeing. Neutral pH of dye solutions showed in higher K/S value than acidic or alkaline conditions. But the colorfastness to washing and light according to polycarboxylic acid treat was not enhance.

  • PDF

Preparation and Properties of Aminated Poly(ethersulfone) Ion-Exchange Membrane by UV Irradiation Method (UV 조사에 의한 아민화 Poly(ethersulfone) 이온교환막의 제조 및 특성)

  • Choi, Kuk-Jong;Hwan, Eui-Hwan;Rhee, Young-Woo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • The PES-g-BTCA membrane was synthesized by UV irradiation method and then used to be modified into the PES anion exchange membrane by the amination reaction. Their chemical structures and adsorption properties were investigated. The degree of grafting and amination were increased with increasing the reaction time and had the maximum values of 138% and 1.20 mmol/g at 80 min, respectively. The initial thermal degradation temperature of PES membrane was $400^{\circ}C$. Which was reduced as the surface modification reaction had proceeded. The values of contact angle for PES membrane were decreased from 68.1 to $40.2^{\circ}$ with increasing the extent of amination, the water up-take and ion exchange capacity were also increased with increasing UV irradiation time until 80 min. The average pore size and BET surface area were decreased in order of PES, PES-g-BTCA, and aminated PES ion exchange membrane. Their average pore sizes were 624.8, 359.7, and 138.5 ${\AA}$, and their surface areas were 10.1,9.7 and 1.7 $m^2/g$, respectively.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.