• 제목/요약/키워드: BTB-kelch

검색결과 2건 처리시간 0.014초

KBTBD7, a novel human BTB-kelch protein, activates transcriptional activities of SRE and AP-1

  • Hu, Junjian;Yuan, Wuzhou;Tang, Ming;Wang, Yuequn;Fan, Xiongwei;Mo, Xiaoyang;Li, Yongqing;Ying, Zaochu;Wan, Yongqi;Ocorr, Karen;Bodmer, Rolf;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.17-22
    • /
    • 2010
  • In this study, a novel member of BTB-kelch proteins, named KBTBD7, was cloned from a human embryonic heart cDNA library. The cDNA of KBTBD7 is 3,008 bp long and encodes a protein product of 684 amino acids (77.2 kD). This protein is highly conserved in evolution across different species. Western blot analysis indicates that a 77 kD protein specific for KBTBD7 is wildly expressed in all embryonic tissues examined. In COS-7 cells, KBTBD7 proteins are localized to the cytoplasm. KBTBD7 is a transcription activator when fused to GAL4 DNA-binding domain. Deletion analysis indicates that the BTB domain and kelch repeat motif are main regions for transcriptional activation. Overexpression of KBTBD7 in MCF-7 cells activates the transcriptional activities of activator protein-1 (AP-1) and serum response element (SRE), which can be relieved by siRNA. These results suggest that KBTBD7 proteins may act as a new transcriptional activator in mitogen-activated protein kinase (MAPK) signaling.

A Novel Human BTB-kelch Protein KLHL31, Strongly Expressed in Muscle and Heart, Inhibits Transcriptional Activities of TRE and SRE

  • Yu, Weishi;Li, Yongqing;Zhou, Xijin;Deng, Yun;Wang, Zequn;Yuan, Wuzhou;Li, Dali;Zhu, Chuanbing;Zhao, Xueying;Mo, Xiaoyang;Huang, Wen;Luo, Na;Yan, Yan;Ocorr, Karen;Bodmer, Rolf;Wang, Yuequn;Wu, Xiushan
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.443-453
    • /
    • 2008
  • The Bric-a-brac, Tramtrack, Broad-complex (BTB) domain is a protein-protein interaction domain that is found in many zinc finger transcription factors. BTB containing proteins play important roles in a variety of cellular functions including regulation of transcription, regulation of the cytoskeleton, protein ubiquitination, angiogenesis, and apoptosis. Here, we report the cloning and characterization of a novel human gene, KLHL31, from a human embryonic heart cDNA library. The cDNA of KLHL31 is 5743 bp long, encoding a protein product of 634 amino acids containing a BTB domain. The protein is highly conserved across different species. Western blot analysis indicates that the KLHL31 protein is abundantly expressed in both embryonic skeletal and heart tissue. In COS-7 cells, KLHL31 proteins are localized to both the nucleus and the cytoplasm. In primary cultures of nascent mouse cardiomyocytes, the majority of endogenous KLHL31 proteins are localized to the cytoplasm. KLHL31 acts as a transcription repressor when fused to GAL4 DNA-binding domain and deletion analysis indicates that the BTB domain is the main region responsible for this repression. Overexpression of KLHL31 in COS-7 cells inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). KLHL31 also significantly reduces JNK activation leading to decreased phosphorylation and protein levels of the JNK target c-Jun in both COS-7 and Hela cells. These results suggest that KLHL31 protein may act as a new transcriptional repressor in MAPK/JNK signaling pathway to regulate cellular functions.