• Title/Summary/Keyword: BT-oxalate

Search Result 8, Processing Time 0.021 seconds

Effects of Aging Additives in Preparation of Barium Titanate by Oxalate Process (Oxalate법에 의한 $BaTiO_3$분체제조에서 시효시 첨가제의 영향)

  • 노준형;신효순;이대희;이석기;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.323-329
    • /
    • 1997
  • Particle growth of BT-oxalate was investigated in aging with various additives such as glycerine, chloro-form and NaCl. Their effects on size and morphlogy of particle was examined. It can be known that particle size distributions of BT-oxalate precipitate varied with amounts of these additivies. With small amounts of these additives, particle growth of nonuniform distribution was occurred, but above 1 mole percent of those additives, uniform size distributions of about 0.4 ${\mu}{\textrm}{m}$ could be obtain. There was little difference among the effects by the kinds of additives. From the decomposition of uniform BT-oxalate, BaTiO3 powders of about 0.3${\mu}{\textrm}{m}$ could be obtained.

  • PDF

Morphology of Barium Titanyl Oxalate Produced by Homogeneous Precipitation from Acidic Solution of Dimethyl Oxalate (Dimethyl Oxalate에 의한 균일 침전법으로 생성된 Barium Titanyl Oxalate의 형태학적 연구)

  • Min, Chonkyu;Lee, Chul
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.203-208
    • /
    • 1997
  • Barium titanyl oxalate(BTO) was precipatated by utilizing the thermal decomposition of dimethyl oxalate in acidic aqueous solution having $BaCl_2$ and $TiCl_4$. Particle morphology of BTO was influeneced by the various experimental factors. i.e.. the faster rate to nucleation with higher temperature and the higher ratio of [DMO]/[$Ba^{2+}+Ti^{4+}$] was found to correspond to the faster rate of transformation of particle size distribution from unimodal to broad unimodal through bimodal. The BT powder obtained by calcination at $900^{\circ}C$ in air consists of larger particles than BT generated by general coprecipitation method and shows tetragonal symmetry. The stirring during reaction was also found to have much effect upon characteristics of BTO and BT.

  • PDF

Agglomeration of Barium Titanyl Oxalate Tetrahydrate

  • Park, Zee-Hun;Shin, Hyo-Soon
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 1995
  • The optimal condition for minimal agglomeration of barium titanyl oxalate tetrahydrate, the precipitate on preparing barium titanate by oxalate process, was investigated. Burette-dropping and dual-nozzle-spraying were used as adding methods. pH of washing water for precipitates was changed, and sodium pyrophosphate solution, methanol, ethoanol, and acetone were used as washing agents for precipitates, as well as distilled water. Drying temperature was changed from $50^{\circ}C$ to $120^{\circ}C$. Spraying, methanol-washing, and drying at $60^{\circ}C$ showed the most dispersed distribution, Below $70^{\circ}C$, the crystalline phases were observed.

  • PDF

Particle Growth in Oxalate Process II; Control of Barium Titanyl Oxalate Particle Size

  • Hyo-Soon Shin;Zee Hoon Park;Chang Hyun Kim;Byung Kyo Lee
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.70-75
    • /
    • 1996
  • On the basis of growth mechanism proposed by recent work, partile of barium titanyl oxalate was controlled by aging in water. From aging at $25^{\circ}C$ for 3 hours, uniform particles of 0.3 ${\mu}$m were obtained. During aging, abnormal particle growth was observed, which were thought to be caused by impurities in water. With increase of aging time and temperature, particle grows more, and differential growth was promoted. In aging for long time, grown particles were cracked.

  • PDF

Particle Growth in Oxalate Process I

  • Park, Zee-Hoon;Shin, Hyo-Soon;Lee, Byung-Kyo
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.63-69
    • /
    • 1996
  • Barium titanyl oxalates, strontium titanyl oxalates and calcium zirconyl oxalates were prepared with variation of solution concentration and method of adding mixed metal ion solution into oxalic acid. Then they were aged in distilled water, ethanol or methanol, respectively. Barium titanyl oxalates and calcium zironyl oxalates were grown in water and strontium titanyl oxalates were groun in both water and methanol. They were supposed to be grown through the solutionl and reprecipitation mechanism. Nonuniform dispersion of particles in liquid phase is thought to cause abnormal particle growth.

  • PDF

Taxonomical Classification and Genesis of Jeju Series in Jeju Island (제주도 토양인 제주통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.230-236
    • /
    • 2010
  • Jeju Island is a volanic island which is located about 96 km south of Korean Peninsula. Volcanic ejecta, and volcaniclastic materials are widespread as soil parent materials throughout the island. Soils on the island have the characteristics of typical volcanic ash soils. This study was conducted to reclassify Jeju series based on the second edition of Soil Taxonomy and to discuss the formation of Jeju series in Jeju Island. Morphological properties of typifying pedon of Jeju series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has dark brown (10YR 3/3) silt clay loam A horizon (0~22 cm), strong brown (7.5YR 4/6) silty clay BAt horizon (22~43 cm), brown (7.5YR 4/4) silty clay Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay loamBt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay loam Bt3 horizon (105~150 cm). It is developed in elevated lava plain, and are derived from basalt, and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85%phosphate retention, and higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol. Its has 0.9% or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult. It dose not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and key out as Haplohumult. A hoizon (0~22 cm) has a fine-earth fraction with both a bulk density of 1.0 Mg $cm^{-3}$ or less, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0. Thus, it keys out as Andic Haplohumult. It has 35% or more clay at the particle-size control section, and has thermic soil temperature regime. Jeju series can be classified as fine, mixed, themic family of Andic Haplohumults, not as ashy, thermic family of Typic Hapludands. In the western, and northern coastal areas which have a relatively dry climate in Jeju Island, non Andisols are widely distributed. Mean annual precipitation increase 110 mm, and mean annual temperature decrease $0.8^{\circ}C$ with increasing elevation of 100m. In the western, and northern mid-mountaineous areas Andisols, and non Andisols are distributed simultaneously. Jeju series distributed mainly in the western and northern mid-mountaineous areas are developed as Ultisols with Andic subgroup.

Taxonomical Classification and Genesis of Donggui Series in Jeju Island (제주도 토양인 동귀통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Kang, Ho-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • This study was conducted to reclassify Donggui series based on the second edition of Soil Taxonomy and to discuss the formation of Donggui series in Jeju Island. Morphological properties of typifying pedon of Donggui series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has very dark grayish brown (10YR 3/2) silt loam A horizon (0~17 cm), gravelly very dark grayish brown (10YR 3/2) silt loam BA horizon (17~42 cm), gravelly very dark grayish brown (10YR 3/2) silty clay loam Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay Bt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay Bt3 horizon (105~150 cm). It is developed in lava plain and are derived from basalt and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than 0.90 $Mg/m^3$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol and Inceptisol. It has udic soil moisture regime, and can be classified as Udalf. Also that meets the requirements of Typic Hapludalf. It has 18-35% clay at the particle-size control section, and have thermic soil temperature regime. Therefore Donggui series can be classified as fine loamy, mixed, thermic family of Typic Hapludalfs, not as fine silty, mixed, thermic family of Dystric Eutrudepts.

Taxonomical Classification and Genesis of Yongheung Series in Jeju Island (제주도 토양인 용흥통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.478-485
    • /
    • 2009
  • This study was conducted to reclassify Yongheung series based on the second edition of Soil Taxonomy and to discuss the formation of Yongheung series in Jeju Island. Morphological properties of typifying pedon of Yongheung series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon contains 3.2~3.4% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than $0.90Mg\;m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 15 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol or Alfisol. The typifying pedon has 0.9 % or more organic carbon in the upper 15 cm of the argillic horizon and accordingly, can be classified as Humult. It has a clay distribution in which the percentage of clay does not decrese from its maximum amount by 20% or more within a depth of 150 cm from the mineral soil surface, and keys out as Palehumult. Also that meets the requirements of Typic Palehumult. That has 35 % or more clay at the particle-size control section and has mesic soil temperature regime. Yongheung series can be classified as fine, mixed, thermic family of Typic Palehumults, not as fine, mixed, thermic family of Typic Hapludalfs. Most soils distributed in the southern coastal areas in Jeju island which have a humid climate are developed as Andisols. But Yongheung series distributed in this areas and derived from mainly trachyte, trachytic andesite, and volcanic ash are developed as Ultisols.